国产一精品一AV一免费,亚洲成AV人片不卡无码,AV永久天堂一区二区三区,国产激情久久久久影院

首頁(yè) 500強(qiáng) 活動(dòng) 榜單 商業(yè) 科技 商潮 專(zhuān)題 品牌中心
雜志訂閱

這些公司正在利用人工智能重塑能源行業(yè)

人工智能與能源的融合也迫使人們重新審視行業(yè)傳統(tǒng)實(shí)踐,這為減輕環(huán)境影響創(chuàng)造了契機(jī)。

文本設(shè)置
小號(hào)
默認(rèn)
大號(hào)
Plus(0條)

圖片來(lái)源:Illustration by Simon Landrein

人工智能的崛起引發(fā)了能源悖論。盡管ChatGPT等人工智能工具背后的科技領(lǐng)軍人物稱(chēng),大型語(yǔ)言模型能解決世界面臨的重大問(wèn)題,然而為該技術(shù)提供動(dòng)力的基礎(chǔ)設(shè)施卻可能因?qū)Νh(huán)境造成的影響而引發(fā)另一個(gè)問(wèn)題。能源效率監(jiān)測(cè)公司Verdigris首席執(zhí)行官馬克·鐘(Mark Chung)指出,人工智能數(shù)據(jù)中心的能耗可能是傳統(tǒng)基于中央處理器數(shù)據(jù)中心的20至30倍。部分專(zhuān)家預(yù)測(cè),未來(lái)五年內(nèi),人工智能將占美國(guó)電力消耗的10%以上,這加劇了人們的擔(dān)憂(yōu):若對(duì)人工智能計(jì)算需求不加約束,或?qū)⒁灾笖?shù)級(jí)速度加速氣候破壞進(jìn)程。

然而,人工智能與能源的融合也迫使人們重新審視行業(yè)傳統(tǒng)實(shí)踐,這為減輕環(huán)境影響創(chuàng)造了契機(jī)——通過(guò)使電網(wǎng)及其供電的數(shù)據(jù)中心以比以往更為清潔、高效的方式運(yùn)行。

“為數(shù)據(jù)中心供電面臨的最大挑戰(zhàn)之一在于優(yōu)化能源流動(dòng),而人工智能在攻克這一難題上能夠發(fā)揮巨大作用?!盋limate Capital合伙人凱蒂·達(dá)勒姆(Katie Durham)表示。

Kraken Technologies是利用人工智能攻克能效難題的行業(yè)巨頭之一。其人工智能驅(qū)動(dòng)的操作系統(tǒng)為全球40家公用事業(yè)公司旗下超7000萬(wàn)客戶(hù)賬戶(hù)提供服務(wù)。據(jù)向《財(cái)富》雜志提供的數(shù)據(jù)顯示,該系統(tǒng)連接了超50萬(wàn)臺(tái)消費(fèi)設(shè)備(從電動(dòng)汽車(chē)充電器到家用電池),控制著超5吉瓦的靈活能源供應(yīng),僅在2024年,就抵消了1400萬(wàn)噸二氧化碳排放。

Kraken首席營(yíng)銷(xiāo)與靈活性官德維姆·塞拉爾(Devrim Celal)表示,公司成功的關(guān)鍵在于挖掘可再生能源需求中蘊(yùn)含的效率潛力。他解釋道:“在向可再生能源轉(zhuǎn)型的過(guò)程中,會(huì)涌現(xiàn)出一系列全新的問(wèn)題?!惫镜娜蝿?wù)是分析可再生能源需求,構(gòu)建基于用戶(hù)特定消耗模式的能源存儲(chǔ)與調(diào)配系統(tǒng)。

他還提到,公司利用機(jī)器學(xué)習(xí)技術(shù),根據(jù)用戶(hù)的能源消耗模式對(duì)其進(jìn)行分組,進(jìn)而以高達(dá)90%的準(zhǔn)確率高效分配可再生能源電力。這意味著,如果客戶(hù)通常在每天晚上9點(diǎn)至次日早上7點(diǎn)將電動(dòng)汽車(chē)充至滿(mǎn)電,系統(tǒng)會(huì)在此時(shí)段調(diào)配能源,并在車(chē)輛不在家時(shí)預(yù)留電力。他說(shuō)道:“這對(duì)于維持電網(wǎng)平衡而言,具有極高的價(jià)值?!?

總部位于邁阿密的Exowatt正在開(kāi)發(fā)太陽(yáng)能發(fā)電系統(tǒng),旨在為人工智能數(shù)據(jù)中心提供全天候電力供應(yīng)。該公司首席執(zhí)行官兼聯(lián)合創(chuàng)始人漢南·哈皮(Hannan Happi)表示,通過(guò)提供太陽(yáng)能存儲(chǔ)與全天候調(diào)度方案,該公司助力公用事業(yè)公司應(yīng)對(duì)太陽(yáng)能固有的供應(yīng)間歇性問(wèn)題,擺脫對(duì)碳排放能源的依賴(lài)?!拔覀冋隣?zhēng)分奪秒地將產(chǎn)品推向市場(chǎng)并盡快擴(kuò)大規(guī)模,”他強(qiáng)調(diào),“因?yàn)樘热舨贿@么做,數(shù)據(jù)中心客戶(hù)所能采用的唯一能源和電力解決方案,便是將柴油和天然氣接入電網(wǎng),這將給數(shù)據(jù)中心周邊社區(qū)帶來(lái)極為嚴(yán)重的影響。”

Exowatt內(nèi)部也高度依賴(lài)人工智能技術(shù)。該公司利用大型語(yǔ)言模型驅(qū)動(dòng)“數(shù)字孿生”系統(tǒng),該系統(tǒng)能夠?qū)崟r(shí)模擬性能并實(shí)現(xiàn)預(yù)防性維護(hù)。該公司正用定制化人工智能軟件取代傳統(tǒng)SaaS工具,以滿(mǎn)足其供應(yīng)鏈和制造需求。

初創(chuàng)公司Halcyon獲得了1080萬(wàn)美元種子輪融資,正以不同的方式利用人工智能為能源領(lǐng)域從業(yè)者提供支持。該公司開(kāi)發(fā)的大型語(yǔ)言模型能處理聯(lián)邦能源管理委員會(huì)(Federal Energy Regulatory Commission)、能源部(Department of Energy)等機(jī)構(gòu)的監(jiān)管文件,將其轉(zhuǎn)化為可搜索的結(jié)構(gòu)化信息——這不僅為能源開(kāi)發(fā)商節(jié)省了時(shí)間,還拓寬了其獲取電池激勵(lì)政策、電網(wǎng)限制及輸電計(jì)劃等最新數(shù)據(jù)的渠道。

“我們主要利用大型語(yǔ)言模型來(lái)閱讀文件?!盚alcyon的數(shù)據(jù)科學(xué)主管山姆·斯泰爾(Sam Steyer)表示,“想想能源公司的監(jiān)管分析師,過(guò)去他們可能需要查找包含相關(guān)信息的長(zhǎng)達(dá)1000頁(yè)的PDF文件,用‘查找’功能搜索,可能耗費(fèi)一整天時(shí)間才能找到所需數(shù)據(jù)……我們正全力讓這一過(guò)程變得更為高效、快捷,讓他們能在更大范圍內(nèi)開(kāi)展同樣的工作。”

Halcyon的使命之一,便是確保人工智能日益增長(zhǎng)的電力需求能夠助推清潔能源轉(zhuǎn)型。該公司正在構(gòu)建數(shù)據(jù)中心專(zhuān)項(xiàng)電價(jià)追蹤器,以及助力可再生能源開(kāi)發(fā)商快速選址的工具。

施泰爾表示:“人工智能與能源實(shí)則相輔相成。人工智能正顯著推動(dòng)電力需求持續(xù)攀升……它將在擴(kuò)大電力系統(tǒng)規(guī)模的過(guò)程中起到至關(guān)重要的作用。”

譯者:中慧言-王芳(財(cái)富中文網(wǎng))

人工智能的崛起引發(fā)了能源悖論。盡管ChatGPT等人工智能工具背后的科技領(lǐng)軍人物稱(chēng),大型語(yǔ)言模型能解決世界面臨的重大問(wèn)題,然而為該技術(shù)提供動(dòng)力的基礎(chǔ)設(shè)施卻可能因?qū)Νh(huán)境造成的影響而引發(fā)另一個(gè)問(wèn)題。能源效率監(jiān)測(cè)公司Verdigris首席執(zhí)行官馬克·鐘(Mark Chung)指出,人工智能數(shù)據(jù)中心的能耗可能是傳統(tǒng)基于中央處理器數(shù)據(jù)中心的20至30倍。部分專(zhuān)家預(yù)測(cè),未來(lái)五年內(nèi),人工智能將占美國(guó)電力消耗的10%以上,這加劇了人們的擔(dān)憂(yōu):若對(duì)人工智能計(jì)算需求不加約束,或?qū)⒁灾笖?shù)級(jí)速度加速氣候破壞進(jìn)程。

然而,人工智能與能源的融合也迫使人們重新審視行業(yè)傳統(tǒng)實(shí)踐,這為減輕環(huán)境影響創(chuàng)造了契機(jī)——通過(guò)使電網(wǎng)及其供電的數(shù)據(jù)中心以比以往更為清潔、高效的方式運(yùn)行。

“為數(shù)據(jù)中心供電面臨的最大挑戰(zhàn)之一在于優(yōu)化能源流動(dòng),而人工智能在攻克這一難題上能夠發(fā)揮巨大作用?!盋limate Capital合伙人凱蒂·達(dá)勒姆(Katie Durham)表示。

Kraken Technologies是利用人工智能攻克能效難題的行業(yè)巨頭之一。其人工智能驅(qū)動(dòng)的操作系統(tǒng)為全球40家公用事業(yè)公司旗下超7000萬(wàn)客戶(hù)賬戶(hù)提供服務(wù)。據(jù)向《財(cái)富》雜志提供的數(shù)據(jù)顯示,該系統(tǒng)連接了超50萬(wàn)臺(tái)消費(fèi)設(shè)備(從電動(dòng)汽車(chē)充電器到家用電池),控制著超5吉瓦的靈活能源供應(yīng),僅在2024年,就抵消了1400萬(wàn)噸二氧化碳排放。

Kraken首席營(yíng)銷(xiāo)與靈活性官德維姆·塞拉爾(Devrim Celal)表示,公司成功的關(guān)鍵在于挖掘可再生能源需求中蘊(yùn)含的效率潛力。他解釋道:“在向可再生能源轉(zhuǎn)型的過(guò)程中,會(huì)涌現(xiàn)出一系列全新的問(wèn)題。”公司的任務(wù)是分析可再生能源需求,構(gòu)建基于用戶(hù)特定消耗模式的能源存儲(chǔ)與調(diào)配系統(tǒng)。

他還提到,公司利用機(jī)器學(xué)習(xí)技術(shù),根據(jù)用戶(hù)的能源消耗模式對(duì)其進(jìn)行分組,進(jìn)而以高達(dá)90%的準(zhǔn)確率高效分配可再生能源電力。這意味著,如果客戶(hù)通常在每天晚上9點(diǎn)至次日早上7點(diǎn)將電動(dòng)汽車(chē)充至滿(mǎn)電,系統(tǒng)會(huì)在此時(shí)段調(diào)配能源,并在車(chē)輛不在家時(shí)預(yù)留電力。他說(shuō)道:“這對(duì)于維持電網(wǎng)平衡而言,具有極高的價(jià)值。”

總部位于邁阿密的Exowatt正在開(kāi)發(fā)太陽(yáng)能發(fā)電系統(tǒng),旨在為人工智能數(shù)據(jù)中心提供全天候電力供應(yīng)。該公司首席執(zhí)行官兼聯(lián)合創(chuàng)始人漢南·哈皮(Hannan Happi)表示,通過(guò)提供太陽(yáng)能存儲(chǔ)與全天候調(diào)度方案,該公司助力公用事業(yè)公司應(yīng)對(duì)太陽(yáng)能固有的供應(yīng)間歇性問(wèn)題,擺脫對(duì)碳排放能源的依賴(lài)?!拔覀冋隣?zhēng)分奪秒地將產(chǎn)品推向市場(chǎng)并盡快擴(kuò)大規(guī)模,”他強(qiáng)調(diào),“因?yàn)樘热舨贿@么做,數(shù)據(jù)中心客戶(hù)所能采用的唯一能源和電力解決方案,便是將柴油和天然氣接入電網(wǎng),這將給數(shù)據(jù)中心周邊社區(qū)帶來(lái)極為嚴(yán)重的影響。”

Exowatt內(nèi)部也高度依賴(lài)人工智能技術(shù)。該公司利用大型語(yǔ)言模型驅(qū)動(dòng)“數(shù)字孿生”系統(tǒng),該系統(tǒng)能夠?qū)崟r(shí)模擬性能并實(shí)現(xiàn)預(yù)防性維護(hù)。該公司正用定制化人工智能軟件取代傳統(tǒng)SaaS工具,以滿(mǎn)足其供應(yīng)鏈和制造需求。

初創(chuàng)公司Halcyon獲得了1080萬(wàn)美元種子輪融資,正以不同的方式利用人工智能為能源領(lǐng)域從業(yè)者提供支持。該公司開(kāi)發(fā)的大型語(yǔ)言模型能處理聯(lián)邦能源管理委員會(huì)(Federal Energy Regulatory Commission)、能源部(Department of Energy)等機(jī)構(gòu)的監(jiān)管文件,將其轉(zhuǎn)化為可搜索的結(jié)構(gòu)化信息——這不僅為能源開(kāi)發(fā)商節(jié)省了時(shí)間,還拓寬了其獲取電池激勵(lì)政策、電網(wǎng)限制及輸電計(jì)劃等最新數(shù)據(jù)的渠道。

“我們主要利用大型語(yǔ)言模型來(lái)閱讀文件?!盚alcyon的數(shù)據(jù)科學(xué)主管山姆·斯泰爾(Sam Steyer)表示,“想想能源公司的監(jiān)管分析師,過(guò)去他們可能需要查找包含相關(guān)信息的長(zhǎng)達(dá)1000頁(yè)的PDF文件,用‘查找’功能搜索,可能耗費(fèi)一整天時(shí)間才能找到所需數(shù)據(jù)……我們正全力讓這一過(guò)程變得更為高效、快捷,讓他們能在更大范圍內(nèi)開(kāi)展同樣的工作?!?/p>

Halcyon的使命之一,便是確保人工智能日益增長(zhǎng)的電力需求能夠助推清潔能源轉(zhuǎn)型。該公司正在構(gòu)建數(shù)據(jù)中心專(zhuān)項(xiàng)電價(jià)追蹤器,以及助力可再生能源開(kāi)發(fā)商快速選址的工具。

施泰爾表示:“人工智能與能源實(shí)則相輔相成。人工智能正顯著推動(dòng)電力需求持續(xù)攀升……它將在擴(kuò)大電力系統(tǒng)規(guī)模的過(guò)程中起到至關(guān)重要的作用?!?/p>

譯者:中慧言-王芳(財(cái)富中文網(wǎng))

The rise of artificial intelligence has created an energy paradox. While tech leaders behind AI tools like ChatGPT say large language models can solve some of the world’s biggest problems, the infrastructure powering the technology may be creating another problem as a result of the environmental impact. AI data centers can consume 20 to 30 times as much energy as their CPU-based predecessors, according to Mark Chung, CEO of energy efficiency monitoring company Verdigris. Some experts predict AI will account for more than 10% of U.S. electricity consumption within five years, fueling fears that unchecked AI compute demand could exponentially accelerate climate damage.

But the convergence of AI and energy is also forcing a rethink of the industry’s traditional practices, creating opportunities to mitigate the environmental impact by making the grid, and the data centers it feeds, operate more cleanly and more efficiently than was possible before.

“One of the biggest challenges with providing energy to a data center is optimizing the flow of that energy, and that is a problem that AI can be extremely helpful in solving,” says Katie Durham, a partner at Climate Capital.

One of the largest players using AI to tackle this efficiency problem is Kraken Technologies. Its AI-powered operating system serves over 70 million customer accounts across 40 utilities worldwide. It connects more than 500,000 consumer devices—from EV chargers to home batteries—and controls over five gigawatts of flexible energy supply, offsetting 14 million tons of CO? in 2024 alone, according to figures shared with Fortune.

Devrim Celal, Kraken’s chief marketing and flexibility officer, said the company’s success hinges on finding efficiencies in renewable energy demand. “When you transition to renewable energy, you get a completely new set of problems,” he says, explaining the company’s role in analyzing the demand for renewables to create a system that stores or deploys energy based on user-specific consumption patterns.

He also notes that the company uses machine learning to cluster consumers based on their energy consumption patterns and efficiently distribute renewable power with 90% accuracy. This means that if a customer typically charges their electric vehicle to 100% from 9 p.m. to 7 a.m. every day, the energy will be deployed at this time and reserved when the vehicle is away from home. “That’s incredibly powerful when balancing the grid,” he says.

Miami-based Exowatt is building solar energy systems designed to power AI data centers around the clock. By providing a means to store and dispatch solar power at any time of day, the company helps utilities deal with the inherent intermittency of solar without resorting to carbon-emitting energy sources, says Exowatt CEO and cofounder Hannan Happi. “We’re really in a mad rush to bring the product to market and scale it as fast as possible,” he notes. “Because if we don’t, the only energy and power solution data center customers have available to them is just putting diesel and natural gas on the grid, which is really, really affecting the communities around where these data centers are being built.”

Exowatt is also leaning heavily on AI internally. It uses LLMs to power a “digital twin” system that simulates performance in real time and enables proactive maintenance. The company is replacing traditional SaaS tools with custom-built AI software, tailored to its supply-chain and manufacturing needs.

Halcyon, a startup with $10.8 million in seed funding, is using AI to help energy professionals in a different way. The firm has created large language models that ingest regulatory filings from agencies like the Federal Energy Regulatory Commission and the Department of Energy and makes them searchable and structured—saving energy developers time and expanding access to up-to-date data on battery incentives, grid constraints, and transmission plans.

“We’re using LLMs primarily to read,” says Sam Steyer, head of data science at Halcyon. “We think of the regulatory analyst at an energy company who, in the past, would have to search for the right 1,000 page PDF and then use Control F and maybe spend a day finding the right piece of data … We’re trying to make that process as efficient and fast as possible and empower that person to do the same work at a much bigger scale.”

A part of Halcyon’s mission is to ensure that AI’s expanding appetite for electricity also accelerates the clean energy transition. The company is building trackers for special data center electricity rates and tools that help renewable developers site projects faster.

“AI and energy are really symbiotic,” says Steyer. “AI is driving growth in electricity demand in a big way … It’s going to be completely essential to scaling the electricity system.”

財(cái)富中文網(wǎng)所刊載內(nèi)容之知識(shí)產(chǎn)權(quán)為財(cái)富媒體知識(shí)產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專(zhuān)屬所有或持有。未經(jīng)許可,禁止進(jìn)行轉(zhuǎn)載、摘編、復(fù)制及建立鏡像等任何使用。
0條Plus
精彩評(píng)論
評(píng)論

撰寫(xiě)或查看更多評(píng)論

請(qǐng)打開(kāi)財(cái)富Plus APP

前往打開(kāi)
熱讀文章
保德县| 含山县| 三原县| 汕头市| 南宫市| 疏附县| 永丰县| 桑日县| 灵宝市| 大悟县| 金秀| 永川市| 浦县| 白水县| 宜宾县| 汨罗市| 永平县| 阿拉善盟| 余干县| 巍山| 容城县| 平塘县| 湄潭县| 韶关市| 沐川县| 图们市| 原阳县| 炎陵县| 蒙城县| 南通市| 恩施市| 张北县| 洮南市| 铅山县| 临海市| 延边| 鲁甸县| 陆河县| 桦川县| 肇东市| 莒南县|