
麥肯錫的一份報(bào)告顯示,盡管建筑業(yè)每年的資金流動量達(dá)10萬億美元,然而在過去20年里,其平均生產(chǎn)率增長率僅為1%,而制造業(yè)為3.6%,全球經(jīng)濟(jì)總量為2.8%。在一項(xiàng)針對600名美國勞動者的調(diào)查中,建筑業(yè)在創(chuàng)新認(rèn)知層面排名墊底,被認(rèn)為是“技術(shù)能力最為薄弱”的10個行業(yè)之一。這種滯后狀況帶來了嚴(yán)重后果:牛津大學(xué)賽德商學(xué)院(Sa?d Business School at Oxford University)的研究發(fā)現(xiàn),全球超90%的基礎(chǔ)設(shè)施項(xiàng)目要么延期,要么超支。而一項(xiàng)針對600名建筑行業(yè)領(lǐng)導(dǎo)者的調(diào)查顯示,僅在美國,每年因效率低下造成的浪費(fèi)就達(dá)1770億美元。
為解決這一領(lǐng)域的一小部分痛點(diǎn),總部位于加利福尼亞州的BigRentz——自2012年起,該公司為美國各地的承包商匹配叉車、反鏟挖土機(jī)和挖掘機(jī)等重型設(shè)備的租賃場地——對其業(yè)務(wù)進(jìn)行了全面革新,從仍依賴電話運(yùn)營的模式轉(zhuǎn)變?yōu)橥耆趦?nèi)部自主研發(fā)的人工智能系統(tǒng)運(yùn)行。其采用的模型是傳統(tǒng)機(jī)器學(xué)習(xí),這表明除大型語言模型外,早期人工智能技術(shù)仍然具有價(jià)值。如今,該公司正推出一款面向大型承包商的獨(dú)立軟件平臺,該平臺由相同的人工智能系統(tǒng)提供支持,允許客戶根據(jù)現(xiàn)有供應(yīng)商名單進(jìn)行更智能的采購。
“我提到了電子表格,但過去承包商管理供應(yīng)商關(guān)系的方式還包括郵件鏈、短信、電話以及紙質(zhì)記錄,”BigRentz首席執(zhí)行官斯科特·坎農(nóng)(Scott Cannon)表示?!斑@一行業(yè)效率極低——以年度生產(chǎn)力提升幅度來衡量——且利潤微薄。因此,助力承包商做出更優(yōu)決策,將為他們帶來競爭優(yōu)勢?!?/p>
一切始于數(shù)據(jù)戰(zhàn)略
坎農(nóng)表示,自創(chuàng)立之初,公司便一直計(jì)劃利用將要處理的海量數(shù)據(jù),不過在BigRentz成立之際,尚不清楚具體該如何進(jìn)行。在日常業(yè)務(wù)中,公司會跟蹤每一次客戶互動以及相關(guān)數(shù)據(jù)點(diǎn)。例如,當(dāng)承包商提交租賃請求時,BigRentz的銷售人員會記錄設(shè)備類型、施工地點(diǎn)、租賃日期需求以及任何特殊要求(如交付限制或所需配件)。隨后,該員工會聯(lián)系當(dāng)?shù)毓?yīng)商,確認(rèn)能否完成訂單,并為承包商匹配可供貨的供應(yīng)商。BigRentz將所有數(shù)據(jù)存儲起來以備后續(xù)使用,進(jìn)而構(gòu)建起一個內(nèi)容豐富的信息庫,涵蓋供應(yīng)商能否完成訂單的決策信息、價(jià)格上漲情況、服務(wù)費(fèi)用和客戶反饋等內(nèi)容。
2018年,該公司決定開始深入分析這些數(shù)據(jù)。團(tuán)隊(duì)創(chuàng)建了覆蓋全美、精確到平方公里的網(wǎng)格,以展示特定供應(yīng)商的配送范圍、配送時間及成本(涵蓋橋梁、通行費(fèi)及其他意外支出),進(jìn)而確定不同地點(diǎn)的收費(fèi)標(biāo)準(zhǔn)。這一切都是手動完成的,通常是在白板上進(jìn)行,繁瑣的工作流程促使公司尋求更為高效的解決方案。
“試圖挖掘這些信息并加以利用所面臨的挑戰(zhàn),迫使我們決定采用人工智能?!笨厕r(nóng)表示。
新系統(tǒng)……新公司
多年來,BigRentz逐步組建了技術(shù)團(tuán)隊(duì)——包括聘請數(shù)據(jù)科學(xué)家、全棧工程團(tuán)隊(duì)和質(zhì)量保證團(tuán)隊(duì)——并圍繞不同數(shù)據(jù)集構(gòu)建機(jī)器學(xué)習(xí)模型。2022年,該公司將這些模型整合,打造出全新的人工智能系統(tǒng)SiteStack,該系統(tǒng)完全基于內(nèi)部自主研發(fā)的技術(shù)。該公司于1月正式在內(nèi)部推出該系統(tǒng),以自動選定供應(yīng)商。如今,當(dāng)客戶提交租賃請求時,無需團(tuán)隊(duì)成員逐個致電數(shù)十位供應(yīng)商來完成訂單,而是由該系統(tǒng)分析數(shù)百萬條歷史定價(jià)和履約記錄,根據(jù)成本、距離和可靠性對供應(yīng)商進(jìn)行實(shí)時排序,并自動選定最優(yōu)供應(yīng)商。
坎農(nóng)表示,隨著獲取更多信息用于訓(xùn)練系統(tǒng),該系統(tǒng)的性能實(shí)現(xiàn)顯著提升;這套人工智能系統(tǒng)最終建立在5億美元銷售數(shù)據(jù)及超10億美元交互數(shù)據(jù)的基礎(chǔ)之上(后者指公司未達(dá)成的銷售交易,不過,這些交易仍提供了極具價(jià)值的數(shù)據(jù))??厕r(nóng)稱,這些數(shù)據(jù)包括超1300萬條針對訂單請求的供應(yīng)商選擇決策記錄、數(shù)十個定價(jià)數(shù)據(jù)集、客戶反饋以及數(shù)百萬個其他數(shù)據(jù)點(diǎn)(這些數(shù)據(jù)點(diǎn)能預(yù)測總成本或供應(yīng)商行為)。
由機(jī)器學(xué)習(xí)系統(tǒng)為承包商的特定需求確定最佳供應(yīng)商匹配,與該公司以往銷售人員整天打電話聯(lián)系租賃場地的流程相比,堪稱巨大轉(zhuǎn)變。經(jīng)歷了這項(xiàng)人工智能項(xiàng)目后,如今該公司與多年前成立時相比,已截然不同。
“公司內(nèi)部兩種不同文化曾一度存在緊張關(guān)系。(構(gòu)建平臺的團(tuán)隊(duì)所代表的)技術(shù)文化與市場端的銷售和營銷文化存在差異,這始終是個挑戰(zhàn)。但由于自動化,我們(隨著時間的推移逐步)大幅削減了員工數(shù)量,如今公司本質(zhì)上已蛻變成一家科技企業(yè)。”坎農(nóng)說,并補(bǔ)充道,在一個抵觸變革的行業(yè)開展工作是最大阻礙。
人工智能是完成任務(wù)的最佳工具
坎農(nóng)表示,自1月份新系統(tǒng)投入使用以來,BigRentz在租賃服務(wù)采購環(huán)節(jié)每周節(jié)省超3000小時(相當(dāng)于80多個崗位的工作量),錯誤率降低了40%。如今,該公司正面向客戶推出同名系統(tǒng)SiteStack,希望借此將自身實(shí)現(xiàn)的效率提升和成本節(jié)約進(jìn)一步傳遞給客戶。此次推出再次改變了公司的定位——從一家為承包商和供應(yīng)商牽線搭橋的公司,轉(zhuǎn)變?yōu)橐患蚁蚪ㄖ境鍪圮浖墓?,讓客戶能夠憑借前所未有的信息和控制權(quán)自行完成相關(guān)工作。
新平臺采用相同的底層人工智能技術(shù),但允許客戶輸入其已建立合作關(guān)系的供應(yīng)商信息。當(dāng)客戶搜索租賃服務(wù)并獲得排序結(jié)果時,可查看所有供應(yīng)商在該特定租賃服務(wù)中的對比情況,以及當(dāng)前系統(tǒng)中尚未涵蓋的其他供應(yīng)商信息。
坎農(nóng)稱,其理念是簡化行業(yè)定價(jià)模式并提高透明度。他表示,當(dāng)前行業(yè)定價(jià)體系呈現(xiàn)出碎片化特征,且存在“刻意營造的不透明性”,一些供應(yīng)商按日計(jì)費(fèi),另一些按周計(jì)費(fèi),再加上其他種種因素,導(dǎo)致難以進(jìn)行直接比較。
“我們試圖解決的問題在不斷演變,”坎農(nóng)說,“所以,不僅僅是獲取設(shè)備的問題——雖說這確實(shí)是個問題,但算不上大問題——此處無意雙關(guān)。真正的大問題是選擇特定供應(yīng)商的決策過程。起初,我們并沒有打算圍繞人工智能打造公司。只是事實(shí)證明,人工智能是達(dá)成這一目標(biāo)的最佳工具?!?
欲了解更多關(guān)于人工智能在新興行業(yè)的廣泛應(yīng)用情況,請查閱《財(cái)富》雜志最新發(fā)布的AIQ特別報(bào)告,該報(bào)告收錄了各行業(yè)企業(yè)如何利用人工智能的案例,以及該技術(shù)如何重塑其所在領(lǐng)域的詳盡報(bào)道。 (財(cái)富中文網(wǎng))
譯者:中慧言-王芳
麥肯錫的一份報(bào)告顯示,盡管建筑業(yè)每年的資金流動量達(dá)10萬億美元,然而在過去20年里,其平均生產(chǎn)率增長率僅為1%,而制造業(yè)為3.6%,全球經(jīng)濟(jì)總量為2.8%。在一項(xiàng)針對600名美國勞動者的調(diào)查中,建筑業(yè)在創(chuàng)新認(rèn)知層面排名墊底,被認(rèn)為是“技術(shù)能力最為薄弱”的10個行業(yè)之一。這種滯后狀況帶來了嚴(yán)重后果:牛津大學(xué)賽德商學(xué)院(Sa?d Business School at Oxford University)的研究發(fā)現(xiàn),全球超90%的基礎(chǔ)設(shè)施項(xiàng)目要么延期,要么超支。而一項(xiàng)針對600名建筑行業(yè)領(lǐng)導(dǎo)者的調(diào)查顯示,僅在美國,每年因效率低下造成的浪費(fèi)就達(dá)1770億美元。
為解決這一領(lǐng)域的一小部分痛點(diǎn),總部位于加利福尼亞州的BigRentz——自2012年起,該公司為美國各地的承包商匹配叉車、反鏟挖土機(jī)和挖掘機(jī)等重型設(shè)備的租賃場地——對其業(yè)務(wù)進(jìn)行了全面革新,從仍依賴電話運(yùn)營的模式轉(zhuǎn)變?yōu)橥耆趦?nèi)部自主研發(fā)的人工智能系統(tǒng)運(yùn)行。其采用的模型是傳統(tǒng)機(jī)器學(xué)習(xí),這表明除大型語言模型外,早期人工智能技術(shù)仍然具有價(jià)值。如今,該公司正推出一款面向大型承包商的獨(dú)立軟件平臺,該平臺由相同的人工智能系統(tǒng)提供支持,允許客戶根據(jù)現(xiàn)有供應(yīng)商名單進(jìn)行更智能的采購。
“我提到了電子表格,但過去承包商管理供應(yīng)商關(guān)系的方式還包括郵件鏈、短信、電話以及紙質(zhì)記錄,”BigRentz首席執(zhí)行官斯科特·坎農(nóng)(Scott Cannon)表示。“這一行業(yè)效率極低——以年度生產(chǎn)力提升幅度來衡量——且利潤微薄。因此,助力承包商做出更優(yōu)決策,將為他們帶來競爭優(yōu)勢?!?/p>
一切始于數(shù)據(jù)戰(zhàn)略
坎農(nóng)表示,自創(chuàng)立之初,公司便一直計(jì)劃利用將要處理的海量數(shù)據(jù),不過在BigRentz成立之際,尚不清楚具體該如何進(jìn)行。在日常業(yè)務(wù)中,公司會跟蹤每一次客戶互動以及相關(guān)數(shù)據(jù)點(diǎn)。例如,當(dāng)承包商提交租賃請求時,BigRentz的銷售人員會記錄設(shè)備類型、施工地點(diǎn)、租賃日期需求以及任何特殊要求(如交付限制或所需配件)。隨后,該員工會聯(lián)系當(dāng)?shù)毓?yīng)商,確認(rèn)能否完成訂單,并為承包商匹配可供貨的供應(yīng)商。BigRentz將所有數(shù)據(jù)存儲起來以備后續(xù)使用,進(jìn)而構(gòu)建起一個內(nèi)容豐富的信息庫,涵蓋供應(yīng)商能否完成訂單的決策信息、價(jià)格上漲情況、服務(wù)費(fèi)用和客戶反饋等內(nèi)容。
2018年,該公司決定開始深入分析這些數(shù)據(jù)。團(tuán)隊(duì)創(chuàng)建了覆蓋全美、精確到平方公里的網(wǎng)格,以展示特定供應(yīng)商的配送范圍、配送時間及成本(涵蓋橋梁、通行費(fèi)及其他意外支出),進(jìn)而確定不同地點(diǎn)的收費(fèi)標(biāo)準(zhǔn)。這一切都是手動完成的,通常是在白板上進(jìn)行,繁瑣的工作流程促使公司尋求更為高效的解決方案。
“試圖挖掘這些信息并加以利用所面臨的挑戰(zhàn),迫使我們決定采用人工智能。”坎農(nóng)表示。
新系統(tǒng)……新公司
多年來,BigRentz逐步組建了技術(shù)團(tuán)隊(duì)——包括聘請數(shù)據(jù)科學(xué)家、全棧工程團(tuán)隊(duì)和質(zhì)量保證團(tuán)隊(duì)——并圍繞不同數(shù)據(jù)集構(gòu)建機(jī)器學(xué)習(xí)模型。2022年,該公司將這些模型整合,打造出全新的人工智能系統(tǒng)SiteStack,該系統(tǒng)完全基于內(nèi)部自主研發(fā)的技術(shù)。該公司于1月正式在內(nèi)部推出該系統(tǒng),以自動選定供應(yīng)商。如今,當(dāng)客戶提交租賃請求時,無需團(tuán)隊(duì)成員逐個致電數(shù)十位供應(yīng)商來完成訂單,而是由該系統(tǒng)分析數(shù)百萬條歷史定價(jià)和履約記錄,根據(jù)成本、距離和可靠性對供應(yīng)商進(jìn)行實(shí)時排序,并自動選定最優(yōu)供應(yīng)商。
坎農(nóng)表示,隨著獲取更多信息用于訓(xùn)練系統(tǒng),該系統(tǒng)的性能實(shí)現(xiàn)顯著提升;這套人工智能系統(tǒng)最終建立在5億美元銷售數(shù)據(jù)及超10億美元交互數(shù)據(jù)的基礎(chǔ)之上(后者指公司未達(dá)成的銷售交易,不過,這些交易仍提供了極具價(jià)值的數(shù)據(jù))??厕r(nóng)稱,這些數(shù)據(jù)包括超1300萬條針對訂單請求的供應(yīng)商選擇決策記錄、數(shù)十個定價(jià)數(shù)據(jù)集、客戶反饋以及數(shù)百萬個其他數(shù)據(jù)點(diǎn)(這些數(shù)據(jù)點(diǎn)能預(yù)測總成本或供應(yīng)商行為)。
由機(jī)器學(xué)習(xí)系統(tǒng)為承包商的特定需求確定最佳供應(yīng)商匹配,與該公司以往銷售人員整天打電話聯(lián)系租賃場地的流程相比,堪稱巨大轉(zhuǎn)變。經(jīng)歷了這項(xiàng)人工智能項(xiàng)目后,如今該公司與多年前成立時相比,已截然不同。
“公司內(nèi)部兩種不同文化曾一度存在緊張關(guān)系。(構(gòu)建平臺的團(tuán)隊(duì)所代表的)技術(shù)文化與市場端的銷售和營銷文化存在差異,這始終是個挑戰(zhàn)。但由于自動化,我們(隨著時間的推移逐步)大幅削減了員工數(shù)量,如今公司本質(zhì)上已蛻變成一家科技企業(yè)?!笨厕r(nóng)說,并補(bǔ)充道,在一個抵觸變革的行業(yè)開展工作是最大阻礙。
人工智能是完成任務(wù)的最佳工具
坎農(nóng)表示,自1月份新系統(tǒng)投入使用以來,BigRentz在租賃服務(wù)采購環(huán)節(jié)每周節(jié)省超3000小時(相當(dāng)于80多個崗位的工作量),錯誤率降低了40%。如今,該公司正面向客戶推出同名系統(tǒng)SiteStack,希望借此將自身實(shí)現(xiàn)的效率提升和成本節(jié)約進(jìn)一步傳遞給客戶。此次推出再次改變了公司的定位——從一家為承包商和供應(yīng)商牽線搭橋的公司,轉(zhuǎn)變?yōu)橐患蚁蚪ㄖ境鍪圮浖墓?,讓客戶能夠憑借前所未有的信息和控制權(quán)自行完成相關(guān)工作。
新平臺采用相同的底層人工智能技術(shù),但允許客戶輸入其已建立合作關(guān)系的供應(yīng)商信息。當(dāng)客戶搜索租賃服務(wù)并獲得排序結(jié)果時,可查看所有供應(yīng)商在該特定租賃服務(wù)中的對比情況,以及當(dāng)前系統(tǒng)中尚未涵蓋的其他供應(yīng)商信息。
坎農(nóng)稱,其理念是簡化行業(yè)定價(jià)模式并提高透明度。他表示,當(dāng)前行業(yè)定價(jià)體系呈現(xiàn)出碎片化特征,且存在“刻意營造的不透明性”,一些供應(yīng)商按日計(jì)費(fèi),另一些按周計(jì)費(fèi),再加上其他種種因素,導(dǎo)致難以進(jìn)行直接比較。
“我們試圖解決的問題在不斷演變,”坎農(nóng)說,“所以,不僅僅是獲取設(shè)備的問題——雖說這確實(shí)是個問題,但算不上大問題——此處無意雙關(guān)。真正的大問題是選擇特定供應(yīng)商的決策過程。起初,我們并沒有打算圍繞人工智能打造公司。只是事實(shí)證明,人工智能是達(dá)成這一目標(biāo)的最佳工具?!?
欲了解更多關(guān)于人工智能在新興行業(yè)的廣泛應(yīng)用情況,請查閱《財(cái)富》雜志最新發(fā)布的AIQ特別報(bào)告,該報(bào)告收錄了各行業(yè)企業(yè)如何利用人工智能的案例,以及該技術(shù)如何重塑其所在領(lǐng)域的詳盡報(bào)道。 (財(cái)富中文網(wǎng))
譯者:中慧言-王芳
Throughout the recent years of rapid technological innovation, one of the world’s largest industries has lagged behind: construction.
Despite moving $10 trillion every year, the sector has averaged just 1% productivity growth over the past two decades compared to 3.6% for manufacturing and 2.8% for the total world economy, according to a McKinsey report. Construction also ranked last for perceived innovation in a survey of 600 U.S. workers, who deemed the field to be “the least technologically competent” out of 10 industries. This lag comes with serious costs: Research from the Sa?d Business School at Oxford University found that over 90% of the world’s infrastructure projects are late or over budget. And in the U.S. alone, $177 billion is wasted annually due to inefficiencies, according to a survey of 600 construction leaders.
To tackle a small piece of this, BigRentz—a California-based company that since 2012 has matched contractors with rental yards for heavy equipment like forklifts, backhoes, and excavators across the U.S.—reinvented its business from one still operating via phone calls to one running completely on AI that it built internally from the ground up. The models are old-school machine learning, showing there’s still value in earlier AI techniques other than large language models. Now the company is launching a stand-alone software platform for large contractors, which is powered by the same AI system but allows customers to run smarter procurement on their existing lists of suppliers.
“I mentioned spreadsheets, but it’s also been on email chains, text messages, telephone calls, and scribbles on paper,” said BigRentz CEO Scott Cannon, referring to how contractors have historically handled their vendor relationships. “It’s a very inefficient industry—based on productivity gains on an annual basis—and with thin margins. So giving contractors the ability to make better decisions gives them a competitive advantage.”
It all starts with a data strategy
The plan from day one had always been to leverage the massive amount of data the company would be working with, but when BigRentz launched it wasn’t clear how to go about it, Cannon said. The company tracked every customer interaction and associated data point as it conducted its day-to-day business. When a contractor submitted a request for a rental, for example, a BigRentz sales employee would take down the type of equipment, jobsite location, dates the rental would be needed for, and any special requirements like delivery constraints or required accessories. The employee would then call local vendors to see if they could fulfill the order and connect the contractor to one that could. BigRentz stored all that data for future use—creating a rich trove of information ranging from a supplier’s decision about whether it could fulfill the order, to price increases, service charges, and customer feedback.
In 2018 the company decided to start digging into the data. The team created a grid of the entire U.S. down to the square kilometer to represent where specific suppliers will deliver, delivery time, and costs accounting for bridges, tolls, and other contingencies in order to determine what price to charge in different locations. This was all done manually, often on whiteboards, and the tediousness spurred the decision to find a better way.
“The challenges of trying to mine that information and wield it forced us into the decision to use AI,” says Cannon.
A new system…and new company
Over the years, BigRentz started building up its technology team—including hiring data scientists, a full-stack engineering team, and a QA team—and creating machine learning models around different datasets. In 2022 it brought those models together to create its new AI system, SiteStack, relying solely on technology it built in-house. The company officially rolled out the system internally in January to autonomously handle vendor selection. Now, when a customer submits a rental request, rather than a team member calling a dozen or so vendors to fulfill the order, the system analyzes millions of historic pricing and fulfillment records, ranks suppliers in real time based on cost, proximity, and reliability, and selects the optimal vendor automatically.
Cannon said the system got much better as they obtained more information to train it on; the AI system was ultimately built on $500 million in sales data and more than $1 billion in interactions (the latter being sales the company didn’t win but which nonetheless provided valuable data). The data includes more than 13 million supplier decisions about order requests, a dozen pricing datasets, customer feedback, and millions of other data points that can predict what an all-in cost will be or what a supplier will do, according to Cannon.
Having a machine learning system determine the best vendor match for a contractor’s specific need is a huge shift from the company’s previous process in which salespeople spent all day on the phone calling rental yards. The company that’s come out on the other side of this AI project looks completely different than the one that launched years ago.
“The company had some tension between two different cultures for a bit. The tech culture [on the teams building the platform] was different than the sales and marketing on the marketplace side. That was always a bit of a challenge. But we reduced the headcount by so much [gradually over time] due to automation that we’re basically just a tech company at this point,” Cannon said, adding that working in an industry that’s averse to change has been the biggest hurdle.
AI as the best tool for the job
Since it began using the new system in January, Cannon said BigRentz has saved over 3,000 hours every week in terms of time spent on procurement for rental services (the equivalent of over 80 roles) and has reduced errors by 40%. Today, the company is launching a customer-facing version of the system, also called SiteStack, which it hopes will make it possible to further pass on the types of efficiencies and cost savings it has realized to its customers. The launch is transforming the company yet again—from one that connects contractors and vendors to one that sells construction firms software so they can do it themselves with more information and control than ever before.
The new platform uses the same underlying AI but offers customers the ability to input information on the suppliers they already have relationships with. When they search for a rental and get the stack-ranked results, they can see how all their vendors compare for that specific rental, as well as additional vendors not in their current system.
Cannon said the idea is to streamline and bring more transparency to pricing in the industry, which he said is fragmented and “intentionally opaque” with some vendors offering day rates, others offering week rates, and other factors that make it difficult to compare apples to apples.
“What we’re trying to solve for evolved,” Cannon said. “So not just access to equipment, which is a problem, just not a big problem—no pun intended. It’s the decision-making that leads into which vendor you use, which is really the bigger problem. We didn’t set out to build our company around AI. It just turned out to be the best tool for the job.”
Read more about AI’s Long Reach Across New Industries, in the latest Fortune AIQ special report, a collection of stories detailing how businesses across virtually every industry are putting AI to work—and how their particular field is changing as a result of the technology.