在過去幾十年里,雖然醫(yī)學(xué)界在治療中風(fēng)上取得了諸多進(jìn)展,但是還有一些困難始終沒有得到突破。比如醫(yī)學(xué)界常說,治療中風(fēng)就是在與時(shí)間賽跑。中風(fēng)患者的治療每延誤一分鐘,患者出現(xiàn)長期腦損傷甚至死亡的風(fēng)險(xiǎn)就會(huì)上升一分。有專家表示,大腦每缺血一分鐘,患者就會(huì)失去190萬個(gè)左右的神經(jīng)元,并且獨(dú)立生活的能力就會(huì)縮短一周左右。
由于大多數(shù)中風(fēng)都屬于缺血性中風(fēng)(即血栓阻塞了血氧向大腦的輸送),因此治療的關(guān)鍵就在于迅速清除血栓。不管血栓是大是小,密度如何,這一點(diǎn)都是至關(guān)重要的。但是經(jīng)驗(yàn)證明,靠機(jī)械手段清除高密度血栓,是一個(gè)很難實(shí)現(xiàn)的任務(wù)。
雖然搶救時(shí)機(jī)和血栓密度這二者未必存在直接的關(guān)聯(lián),但這兩件事對于搶救中風(fēng)患者來說都至關(guān)重要。而斯坦福大學(xué)最新研究的一項(xiàng)技術(shù),則有望改變中風(fēng)患者的治療方式。
斯坦福團(tuán)隊(duì)開發(fā)了一種叫做“毫微旋轉(zhuǎn)器”的裝置,它是一根配備了鰭片和狹縫的微型空心管,可以強(qiáng)力旋轉(zhuǎn)。實(shí)驗(yàn)室和豬類試驗(yàn)的結(jié)果表明,該設(shè)備能夠顯著壓縮血栓,縮小其體積,有助于醫(yī)生快速取栓,而且通常一次操作即可成功。
斯坦福大學(xué)中風(fēng)研究中心主任、該領(lǐng)域資深專家格雷格?阿爾伯斯表示:“這是一項(xiàng)有望改變游戲規(guī)則的技術(shù),從試驗(yàn)結(jié)果看,它在臨床中也很可能表現(xiàn)出良好的適用性?!?/p>
機(jī)械取栓術(shù)是一種侵入式的微創(chuàng)取栓術(shù)?,F(xiàn)有的取栓方法主要包括用導(dǎo)管抽吸血栓,或者用支架抓取和移除血栓。這些技術(shù)的主要設(shè)計(jì)目的并非縮小血栓的體積。而斯坦福團(tuán)隊(duì)的毫微旋轉(zhuǎn)器似乎總能做這一點(diǎn),而且通常幾秒鐘就能達(dá)到壓縮血栓的效果。
在6月4日發(fā)表于科學(xué)期刊《自然》的一篇論文中,斯坦福團(tuán)隊(duì)公布了毫微旋轉(zhuǎn)器的一些早期測試數(shù)據(jù)。在血流模型測試和豬類實(shí)驗(yàn)中,毫微旋轉(zhuǎn)器展現(xiàn)了最高能使血栓縮小95%的能力。斯坦福大學(xué)神經(jīng)影像與神經(jīng)介入科主任、該論文的聯(lián)合作者杰里米?海特博士表示,在取栓能力上,“多數(shù)情況下,我們的技術(shù)效能比現(xiàn)有技術(shù)高出了一倍以上?!?/p>
據(jù)斯坦福大學(xué)工程師、該論文的第一作者趙苪可介紹,當(dāng)毫微旋轉(zhuǎn)器靠近血栓時(shí),會(huì)同時(shí)向血栓施加一個(gè)壓縮力和一個(gè)剪切力,將血紅細(xì)胞從堅(jiān)韌的纖維蛋白團(tuán)塊中釋放出來。趙苪可表示,當(dāng)他們第一次在實(shí)驗(yàn)室觀察到這種現(xiàn)象時(shí),甚至出乎了他們自己的意料。
趙苪可在接受《財(cái)富》采訪時(shí)表示:“我們感到很神奇,因?yàn)榧幢阄覀冇^察到了這一現(xiàn)象,我們也沒能很快弄清它的工作原理。”
這時(shí),纖維蛋白的核心仍緊密地纏繞在毫微旋轉(zhuǎn)器周轉(zhuǎn),但其體積已較之前顯著縮小,且易于移除。(你可以想象一下,把一個(gè)棉花糖緊緊捏在手里的樣子。)海特表示:“最瘋狂的事,它在幾秒鐘內(nèi)就能起到效果,它可以將血栓旋轉(zhuǎn)成微小的栓塊,并且在幾秒鐘內(nèi)直接吸入導(dǎo)管。速度快得不可思議?!?/p>
研究人員表示,目前他們還有許多工作要做,包括進(jìn)行全面的人體實(shí)驗(yàn)。不過只要人體實(shí)驗(yàn)結(jié)果接近實(shí)驗(yàn)室和豬類實(shí)驗(yàn)的表現(xiàn),該技術(shù)就能徹底改變中風(fēng)患者的治療方式。
在美國,中風(fēng)是第五大致死病因,美國每年約有近80萬人確診中風(fēng),其中約16萬人死亡。其中大約90%的患者為缺血性中風(fēng)(即與血栓有關(guān))。缺血性中風(fēng)患者通常會(huì)接受tPA等溶栓藥物或者機(jī)械除栓治療(有時(shí)是兩者結(jié)合),但是機(jī)械取栓也常有失敗的時(shí)候。
海特指出,在某些情況下,由于血栓體積過大,又或者血栓與血管壁粘連得過緊,導(dǎo)致支架或抽吸裝置無法將其取出。還有些時(shí)候,由于血栓質(zhì)地松散,在取栓過程中可能會(huì)碎裂成小塊。一旦這些栓塊被血流帶到大腦更深處,有可能導(dǎo)致中風(fēng)范圍擴(kuò)大,或者引發(fā)新的神經(jīng)功能缺損。
趙苪可表示:“抽吸和支架取栓都存在較高的血栓碎裂風(fēng)險(xiǎn),而毫微旋轉(zhuǎn)器能有效阻止這種情況發(fā)生?!敝辽僭趯?shí)驗(yàn)室環(huán)境中是如此。
據(jù)專家介紹,現(xiàn)有的機(jī)械除栓裝置,首次操作便成功除栓的幾率通常不超過50%,而且在15%的案例中會(huì)完全失敗。而首次取栓即成功疏通血管的患者,其臨床預(yù)后要明顯優(yōu)于需要多次取栓的患者。
布朗大學(xué)診斷影像學(xué)系主任馬雷什?賈亞拉曼表示:“如果首次取栓就能疏通血管,那么患者的預(yù)后會(huì)比需要取栓兩次、三次甚至四次的患者更好。當(dāng)然,我也需要確認(rèn)毫微旋轉(zhuǎn)器對人體是否安全有效。如果答案是肯定的,那么它有望徹底改革我們對清除腦部血栓的認(rèn)知?!?/p>
趙苪可表示,她和她的同事們一開始并不是想解決除栓的問題。她本來是研究微型機(jī)器人的,她本想搞出一款基于幾何折疊技術(shù)的微型機(jī)器人,讓它可以在血管里游動(dòng)。這種仍在研發(fā)中的機(jī)器人由外部磁場供能,未來將具備向體內(nèi)靶向區(qū)域輸送藥物、執(zhí)行診斷任務(wù)的能力,甚至有朝一日能夠攜帶手術(shù)器械和攝像頭。
趙苪可表示,這種微型機(jī)器人在旋轉(zhuǎn)的時(shí)候會(huì)產(chǎn)生一種“高度局部化的強(qiáng)吸力”。“所以我們就想,能不能用這種吸力來吸住血栓?這個(gè)想法非常簡單,也是一種非常直截了當(dāng)?shù)南敕??!?/p>
海特指出,在實(shí)驗(yàn)室的腦動(dòng)脈血流模型中,毫微型旋轉(zhuǎn)器實(shí)現(xiàn)了500多次100%有效取栓。在豬類實(shí)驗(yàn)中,在90.3%的首次取栓操作中,讓受阻血管恢復(fù)了至少一半的血流量,成功率幾乎是抽吸技術(shù)平均水平的兩倍。而在處理一些最難清除的血栓時(shí),它疏通動(dòng)脈的成功率更是達(dá)到傳統(tǒng)抽吸技術(shù)的近4倍。
海特表示:“我認(rèn)為,該裝置有望為急性缺血性中風(fēng)的治療事帶來顛覆性變革。如果它在清除人體血栓時(shí)的成功率也能像之前的實(shí)驗(yàn)一樣高——我們預(yù)計(jì)應(yīng)該會(huì)是這樣的,那么,毫微旋轉(zhuǎn)器將有望挽救成千上萬人的生命,并且大幅降低中風(fēng)患者的致殘率?!?/p>
接下來,就是要對毫微旋轉(zhuǎn)器開展人體實(shí)驗(yàn)。田納西大學(xué)健康科學(xué)中心神經(jīng)外科醫(yī)生、中風(fēng)專家亞瑟?亞當(dāng)指出,在人體實(shí)驗(yàn)階段,值得關(guān)注的問題有:這種新型療法對人體腦組織有何影響,以及當(dāng)細(xì)胞和血栓碎片被毫微旋轉(zhuǎn)器從纖維蛋白中釋放出來之后,其行為表現(xiàn)如何。
亞當(dāng)指出:“人體試驗(yàn)是至關(guān)重要的,而且人體實(shí)驗(yàn)的結(jié)果,有時(shí)會(huì)與早期研究發(fā)現(xiàn)存在顯著差異?!?/p>
盡管如此,這項(xiàng)技術(shù)的發(fā)展前景依然被專家們廣泛看好。弗吉尼亞大學(xué)醫(yī)學(xué)院放射學(xué)與醫(yī)學(xué)影像學(xué)系主任科林·德代恩表示:“這是一種令人興奮的新裝置,擁有巨大的潛力。如果它在人體實(shí)驗(yàn)中的表現(xiàn)與之前一樣出色,能夠提高血管再通率——也就是成功疏通受阻的脈動(dòng)脈、心臟動(dòng)脈或肺部動(dòng)脈的幾率。那么它將顯著改善中風(fēng)、心梗和肺動(dòng)脈栓塞患者的預(yù)后?!?/p>
這項(xiàng)技術(shù)現(xiàn)在還處于起步階段。趙苪可及其同事認(rèn)為,將來,微型機(jī)器人版的毫微旋轉(zhuǎn)器有可能能夠無束縛地在血管內(nèi)直接游動(dòng),用于治療血栓、腦動(dòng)脈瘤、腎結(jié)石等疾病。同時(shí),該團(tuán)隊(duì)已在加州成立了一家公司,著手推進(jìn)毫微旋轉(zhuǎn)器的臨床試驗(yàn)工作。
趙苪可表示:“隨著中風(fēng)患者群體不斷擴(kuò)大,加上這項(xiàng)技術(shù)前景廣闊,我認(rèn)為,我們將來有望拯救大量患者的生命。我們希望盡快將這項(xiàng)技術(shù)應(yīng)用在人體上,越快越好?!保ㄘ?cái)富中文網(wǎng))
譯者:樸成奎
在過去幾十年里,雖然醫(yī)學(xué)界在治療中風(fēng)上取得了諸多進(jìn)展,但是還有一些困難始終沒有得到突破。比如醫(yī)學(xué)界常說,治療中風(fēng)就是在與時(shí)間賽跑。中風(fēng)患者的治療每延誤一分鐘,患者出現(xiàn)長期腦損傷甚至死亡的風(fēng)險(xiǎn)就會(huì)上升一分。有專家表示,大腦每缺血一分鐘,患者就會(huì)失去190萬個(gè)左右的神經(jīng)元,并且獨(dú)立生活的能力就會(huì)縮短一周左右。
由于大多數(shù)中風(fēng)都屬于缺血性中風(fēng)(即血栓阻塞了血氧向大腦的輸送),因此治療的關(guān)鍵就在于迅速清除血栓。不管血栓是大是小,密度如何,這一點(diǎn)都是至關(guān)重要的。但是經(jīng)驗(yàn)證明,靠機(jī)械手段清除高密度血栓,是一個(gè)很難實(shí)現(xiàn)的任務(wù)。
雖然搶救時(shí)機(jī)和血栓密度這二者未必存在直接的關(guān)聯(lián),但這兩件事對于搶救中風(fēng)患者來說都至關(guān)重要。而斯坦福大學(xué)最新研究的一項(xiàng)技術(shù),則有望改變中風(fēng)患者的治療方式。
斯坦福團(tuán)隊(duì)開發(fā)了一種叫做“毫微旋轉(zhuǎn)器”的裝置,它是一根配備了鰭片和狹縫的微型空心管,可以強(qiáng)力旋轉(zhuǎn)。實(shí)驗(yàn)室和豬類試驗(yàn)的結(jié)果表明,該設(shè)備能夠顯著壓縮血栓,縮小其體積,有助于醫(yī)生快速取栓,而且通常一次操作即可成功。
斯坦福大學(xué)中風(fēng)研究中心主任、該領(lǐng)域資深專家格雷格?阿爾伯斯表示:“這是一項(xiàng)有望改變游戲規(guī)則的技術(shù),從試驗(yàn)結(jié)果看,它在臨床中也很可能表現(xiàn)出良好的適用性。”
機(jī)械取栓術(shù)是一種侵入式的微創(chuàng)取栓術(shù)?,F(xiàn)有的取栓方法主要包括用導(dǎo)管抽吸血栓,或者用支架抓取和移除血栓。這些技術(shù)的主要設(shè)計(jì)目的并非縮小血栓的體積。而斯坦福團(tuán)隊(duì)的毫微旋轉(zhuǎn)器似乎總能做這一點(diǎn),而且通常幾秒鐘就能達(dá)到壓縮血栓的效果。
在6月4日發(fā)表于科學(xué)期刊《自然》的一篇論文中,斯坦福團(tuán)隊(duì)公布了毫微旋轉(zhuǎn)器的一些早期測試數(shù)據(jù)。在血流模型測試和豬類實(shí)驗(yàn)中,毫微旋轉(zhuǎn)器展現(xiàn)了最高能使血栓縮小95%的能力。斯坦福大學(xué)神經(jīng)影像與神經(jīng)介入科主任、該論文的聯(lián)合作者杰里米?海特博士表示,在取栓能力上,“多數(shù)情況下,我們的技術(shù)效能比現(xiàn)有技術(shù)高出了一倍以上?!?/p>
據(jù)斯坦福大學(xué)工程師、該論文的第一作者趙苪可介紹,當(dāng)毫微旋轉(zhuǎn)器靠近血栓時(shí),會(huì)同時(shí)向血栓施加一個(gè)壓縮力和一個(gè)剪切力,將血紅細(xì)胞從堅(jiān)韌的纖維蛋白團(tuán)塊中釋放出來。趙苪可表示,當(dāng)他們第一次在實(shí)驗(yàn)室觀察到這種現(xiàn)象時(shí),甚至出乎了他們自己的意料。
趙苪可在接受《財(cái)富》采訪時(shí)表示:“我們感到很神奇,因?yàn)榧幢阄覀冇^察到了這一現(xiàn)象,我們也沒能很快弄清它的工作原理。”
這時(shí),纖維蛋白的核心仍緊密地纏繞在毫微旋轉(zhuǎn)器周轉(zhuǎn),但其體積已較之前顯著縮小,且易于移除。(你可以想象一下,把一個(gè)棉花糖緊緊捏在手里的樣子。)海特表示:“最瘋狂的事,它在幾秒鐘內(nèi)就能起到效果,它可以將血栓旋轉(zhuǎn)成微小的栓塊,并且在幾秒鐘內(nèi)直接吸入導(dǎo)管。速度快得不可思議。”
研究人員表示,目前他們還有許多工作要做,包括進(jìn)行全面的人體實(shí)驗(yàn)。不過只要人體實(shí)驗(yàn)結(jié)果接近實(shí)驗(yàn)室和豬類實(shí)驗(yàn)的表現(xiàn),該技術(shù)就能徹底改變中風(fēng)患者的治療方式。
在美國,中風(fēng)是第五大致死病因,美國每年約有近80萬人確診中風(fēng),其中約16萬人死亡。其中大約90%的患者為缺血性中風(fēng)(即與血栓有關(guān))。缺血性中風(fēng)患者通常會(huì)接受tPA等溶栓藥物或者機(jī)械除栓治療(有時(shí)是兩者結(jié)合),但是機(jī)械取栓也常有失敗的時(shí)候。
海特指出,在某些情況下,由于血栓體積過大,又或者血栓與血管壁粘連得過緊,導(dǎo)致支架或抽吸裝置無法將其取出。還有些時(shí)候,由于血栓質(zhì)地松散,在取栓過程中可能會(huì)碎裂成小塊。一旦這些栓塊被血流帶到大腦更深處,有可能導(dǎo)致中風(fēng)范圍擴(kuò)大,或者引發(fā)新的神經(jīng)功能缺損。
趙苪可表示:“抽吸和支架取栓都存在較高的血栓碎裂風(fēng)險(xiǎn),而毫微旋轉(zhuǎn)器能有效阻止這種情況發(fā)生。”至少在實(shí)驗(yàn)室環(huán)境中是如此。
據(jù)專家介紹,現(xiàn)有的機(jī)械除栓裝置,首次操作便成功除栓的幾率通常不超過50%,而且在15%的案例中會(huì)完全失敗。而首次取栓即成功疏通血管的患者,其臨床預(yù)后要明顯優(yōu)于需要多次取栓的患者。
布朗大學(xué)診斷影像學(xué)系主任馬雷什?賈亞拉曼表示:“如果首次取栓就能疏通血管,那么患者的預(yù)后會(huì)比需要取栓兩次、三次甚至四次的患者更好。當(dāng)然,我也需要確認(rèn)毫微旋轉(zhuǎn)器對人體是否安全有效。如果答案是肯定的,那么它有望徹底改革我們對清除腦部血栓的認(rèn)知?!?/p>
趙苪可表示,她和她的同事們一開始并不是想解決除栓的問題。她本來是研究微型機(jī)器人的,她本想搞出一款基于幾何折疊技術(shù)的微型機(jī)器人,讓它可以在血管里游動(dòng)。這種仍在研發(fā)中的機(jī)器人由外部磁場供能,未來將具備向體內(nèi)靶向區(qū)域輸送藥物、執(zhí)行診斷任務(wù)的能力,甚至有朝一日能夠攜帶手術(shù)器械和攝像頭。
趙苪可表示,這種微型機(jī)器人在旋轉(zhuǎn)的時(shí)候會(huì)產(chǎn)生一種“高度局部化的強(qiáng)吸力”。“所以我們就想,能不能用這種吸力來吸住血栓?這個(gè)想法非常簡單,也是一種非常直截了當(dāng)?shù)南敕??!?/p>
海特指出,在實(shí)驗(yàn)室的腦動(dòng)脈血流模型中,毫微型旋轉(zhuǎn)器實(shí)現(xiàn)了500多次100%有效取栓。在豬類實(shí)驗(yàn)中,在90.3%的首次取栓操作中,讓受阻血管恢復(fù)了至少一半的血流量,成功率幾乎是抽吸技術(shù)平均水平的兩倍。而在處理一些最難清除的血栓時(shí),它疏通動(dòng)脈的成功率更是達(dá)到傳統(tǒng)抽吸技術(shù)的近4倍。
海特表示:“我認(rèn)為,該裝置有望為急性缺血性中風(fēng)的治療事帶來顛覆性變革。如果它在清除人體血栓時(shí)的成功率也能像之前的實(shí)驗(yàn)一樣高——我們預(yù)計(jì)應(yīng)該會(huì)是這樣的,那么,毫微旋轉(zhuǎn)器將有望挽救成千上萬人的生命,并且大幅降低中風(fēng)患者的致殘率?!?/p>
接下來,就是要對毫微旋轉(zhuǎn)器開展人體實(shí)驗(yàn)。田納西大學(xué)健康科學(xué)中心神經(jīng)外科醫(yī)生、中風(fēng)專家亞瑟?亞當(dāng)指出,在人體實(shí)驗(yàn)階段,值得關(guān)注的問題有:這種新型療法對人體腦組織有何影響,以及當(dāng)細(xì)胞和血栓碎片被毫微旋轉(zhuǎn)器從纖維蛋白中釋放出來之后,其行為表現(xiàn)如何。
亞當(dāng)指出:“人體試驗(yàn)是至關(guān)重要的,而且人體實(shí)驗(yàn)的結(jié)果,有時(shí)會(huì)與早期研究發(fā)現(xiàn)存在顯著差異。”
盡管如此,這項(xiàng)技術(shù)的發(fā)展前景依然被專家們廣泛看好。弗吉尼亞大學(xué)醫(yī)學(xué)院放射學(xué)與醫(yī)學(xué)影像學(xué)系主任科林·德代恩表示:“這是一種令人興奮的新裝置,擁有巨大的潛力。如果它在人體實(shí)驗(yàn)中的表現(xiàn)與之前一樣出色,能夠提高血管再通率——也就是成功疏通受阻的脈動(dòng)脈、心臟動(dòng)脈或肺部動(dòng)脈的幾率。那么它將顯著改善中風(fēng)、心梗和肺動(dòng)脈栓塞患者的預(yù)后。”
這項(xiàng)技術(shù)現(xiàn)在還處于起步階段。趙苪可及其同事認(rèn)為,將來,微型機(jī)器人版的毫微旋轉(zhuǎn)器有可能能夠無束縛地在血管內(nèi)直接游動(dòng),用于治療血栓、腦動(dòng)脈瘤、腎結(jié)石等疾病。同時(shí),該團(tuán)隊(duì)已在加州成立了一家公司,著手推進(jìn)毫微旋轉(zhuǎn)器的臨床試驗(yàn)工作。
趙苪可表示:“隨著中風(fēng)患者群體不斷擴(kuò)大,加上這項(xiàng)技術(shù)前景廣闊,我認(rèn)為,我們將來有望拯救大量患者的生命。我們希望盡快將這項(xiàng)技術(shù)應(yīng)用在人體上,越快越好?!保ㄘ?cái)富中文網(wǎng))
譯者:樸成奎
For all of the advancement in treating stroke victims over the past couple of decades, some concerns have remained almost constant. In medicine, we like to say that “time is brain,” meaning that every moment a stroke goes untreated, the potential for long-term brain damage or death escalates. In fact, every minute that the brain goes without blood flow, the average patient loses around 1.9 million neurons and about a week of independent life, experts say.
As the vast majority of strokes are ischemic, with a blood clot blocking the flow of oxygen to the brain, clearing that clot swiftly is critical. This is true whether the clot is small or large and regardless of its density—but reliably removing the densest clots via mechanical means has proved an elusive task.
Though these concerns, time and density, are not necessarily linked, both matter—one reason, researchers suggest, that a newly developed technology from Stanford University holds the potential to reshape how stroke patients are treated.
The device, called a milli-spinner, is a tiny, powerfully rotating hollow tube outfitted with fins and slits. In action, both lab and swine tests demonstrate the ability to dramatically compact and shrink the size of blood clots, making it easier to remove them quickly and effectively—often on the first try.
“This has the potential to be a game changer,” says Greg Albers, director of the Stanford University Stroke Center and a longtime expert in the field. “The results are likely to translate well to clinical trials.”
Mechanical thrombectomy is a minimally invasive procedure by which blood clots are removed. Existing thrombectomy methods, which involve aspirating clots via a catheter or trying to grab and remove them through a stent, are not designed primarily to reduce the size of blood clots. The milli-spinner appears to do so almost routinely—and very quickly, sometimes in a matter of seconds.
In a paper published June 4 in the scientific journal Nature, the milli-spinner boasted some audacious early numbers. In flow model tests and swine experiments, the thrombectomy device, inserted via a catheter, demonstrated the capacity to shrink clots by up to 95%. “For most cases, we were more than doubling the efficacy of current technology” in terms of opening the artery, says Dr. Jeremy Heit, MD, PhD, chief of neuroimaging and neuro-intervention at Stanford and coauthor of the study.
Placed close to a clot, the milli-spinner exerts both compression and shear forces to release red blood cells from the sometimes-dense fibrin that has bound it in a clump—a somewhat unexpected development when it was first observed in the lab, says Renee Zhao, the Stanford engineer who designed the milli-spinner and was lead author of the Nature study.
“It was magic to us, because even after we saw the phenomena, it was not very straightforward to directly figure out the working mechanism,” Zhao tells Fortune.
A fibrin core remains tightly bound around the milli-spinner, but it is now dramatically smaller than before, and easily removable. (Imagine placing some cotton candy in your hand and then closing your fist tight.) “What’s crazy is, it works in seconds—it literally will spin this thing into a tiny clot and just suck it into the catheter in seconds,” says Heit. “It’s incredibly fast.”
Much work remains, the researchers say, including full-scale human trials. But if the results are even close to what’s been achieved in the lab and swine work, the device could alter the treatment path for an all-too-common, all-too-serious medical issue.
Strokes are the fifth-leading cause of death in the U.S., with about 160,000 deaths a year among the nearly 800,000 cases diagnosed annually. Roughly nine in 10 strokes are ischemic, or clot-related. Patients with ischemic strokes are often treated with clot-busting drugs like tPA or thrombectomy (sometimes both), but the mechanical techniques still encounter failures.
In some cases, a clot is simply too large to be extracted by a stent or aspiration device, or it may be too firmly adhered to a vessel wall. In others, because clots are crumbly, small bits may break off during the retrieval attempt. The blood flow can take them further into the brain, potentially making the size of a stroke bigger or causing a new deficit, says Heit.
“Both aspiration and stent retrievers have a high risk of generating fragmentation,” Zhao says. “The milli-spinner actually prevents it from happening,” at least in the lab.
Current thrombectomy devices successfully remove clots less than 50% of the time on the first try, and in about 15% of cases they fail altogether, experts say. It’s important because people in whom the blockage is removed on the first attempt with thrombectomy have better clinical outcomes than those who require multiple passes.
“The outcomes are much better than if it takes you two, three, four tries to get everything open,” says Maresh Jayaraman, chair of diagnostic imaging at Brown University. “Obviously, we need to know that (the milli-spinner) can be safe and effective in humans. If it is, it has the potential to dramatically revolutionize how we think about removing blood clots from the brain.”
Zhao says she and her colleagues weren’t actually trying to solve this issue, at least not initially. Rather, the engineer had been working on millirobots—tiny, origami-based spinning devices capable of swimming untethered through the bloodstream. Propelled by an external magnetic field, the millirobots, which are still in development, may be able to deliver medicine to targeted regions in the body, perform diagnostic tasks, or perhaps one day even carry instruments or cameras.
The spinning millirobots generate “a highly localized, very strong suction,” says Zhao. “We were thinking, okay, can we use that suction to suck a clot? It was just extremely simple—I mean, a very straightforward way of thinking.”
In the cerebral artery flow model in the lab, Heit says, the milli-spinner was 100% effective at removing clots in more than 500 attempts. In pigs, the device restored at least half of blood flow to blocked blood vessels 90.3% of the time on the first try, nearly twice the average achieved by aspiration. And it was nearly fourfold better at completely opening the artery for the toughest clots.
“I expect (the device) to be a sea-change in technology for the treatment of acute ischemic stroke patients,” Heit says. “If blood clots are removed at the high success rates in humans as they are in our experiments, which we expect to be the case, the milli-spinner will save tens of thousands of lives or more, and substantially reduce disability in treated patients.”
Human clinical trials are the next step. Areas to watch, says Arthur Adam, a neurosurgeon and stroke expert at University of Tennessee Health Sciences Center, include how human brain tissue is affected by the new thrombectomy method, and how the cells and debris behave once they’re liberated from the fibrin by the milli-spinner.
“Human trials are essential, and they sometimes show very different results than what we see in early results,” says Adam.
Still, the development appears promising. “It is a very exciting new device, with great potential,” says Colin Derdeyn, chair of radiology and medical imaging at the University of Virginia School of Medicine. “If it performs in people as well as it does in these models, it will improve recanalization rates—how frequently we are able to open a blocked artery in the brain, heart, or lung. This will lead to better outcomes in patients with stroke, heart attack and pulmonary embolism.”
It may also represent only the front end of the technology. Zhao and her colleagues think the untethered, robotic version of the milli-spinner will be able to swim directly inside blood vessels to treat blood clots, brain aneurysms, kidney stones, and other conditions. In the meantime, the team has formed a company in California to proceed with clinical trials on the milli-spinner.
“Considering the growing patient pool and this very promising technology, I think we can potentially save a lot of patients’ lives,” Zhao says. “We want to see this technology in humans—and the sooner, the better.”