
中國(guó)人工智能公司MiniMax推出全新人工智能模型M1,稱其性能可與OpenAI、Anthropic和谷歌DeepMind等實(shí)驗(yàn)室的頂級(jí)模型相抗衡,而訓(xùn)練成本卻僅為后者的一小部分,且運(yùn)行成本也更低。
此類(lèi)情形早已屢見(jiàn)不鮮:每隔數(shù)月,一家在美國(guó)籍籍無(wú)名的中國(guó)人工智能實(shí)驗(yàn)室便會(huì)發(fā)布一款人工智能模型,顛覆人們對(duì)訓(xùn)練與運(yùn)行前沿人工智能所需成本的傳統(tǒng)認(rèn)知。
今年1月,深度求索(DeepSeek)的R1模型引發(fā)全球轟動(dòng);3月,一家名為蝴蝶效應(yīng)科技(Butterfly Effect,注冊(cè)地在新加坡,但團(tuán)隊(duì)大部分成員在中國(guó))的初創(chuàng)公司及其“代理人工智能”模型Manus曾短暫成為焦點(diǎn);本周,總部位于上海的初創(chuàng)公司MiniMax憑借6月16日推出的M1模型成為人工智能行業(yè)熱議的焦點(diǎn)——此前,該公司因發(fā)布人工智能生成的視頻游戲而聞名。
根據(jù)MiniMax公布的數(shù)據(jù),M1模型在智能和創(chuàng)造力方面可與OpenAI、Anthropic和深度求索的頂尖模型相抗衡,然而其訓(xùn)練和運(yùn)行成本卻低得驚人。
該公司表示,僅花費(fèi)53.47萬(wàn)美元租用數(shù)據(jù)中心計(jì)算資源用于訓(xùn)練M1,這比ChatGPT-4o的訓(xùn)練成本預(yù)估值低近200倍。行業(yè)專(zhuān)家稱,ChatGPT-4o的訓(xùn)練成本可能超過(guò)1億美元(OpenAI尚未公布其訓(xùn)練成本數(shù)據(jù))。
如果這一數(shù)據(jù)準(zhǔn)確無(wú)誤(MiniMax的說(shuō)法尚未得到獨(dú)立驗(yàn)證),那么那些向OpenAI和Anthropic等私有大型語(yǔ)言模型制造商投入數(shù)千億美元的藍(lán)籌股投資者,以及微軟和谷歌的股東,很可能會(huì)因此感到不安。這是因?yàn)槿斯ぶ悄軜I(yè)務(wù)目前處于嚴(yán)重虧損狀態(tài);據(jù)科技媒體《The Information》10月的一份報(bào)告稱,行業(yè)領(lǐng)軍企業(yè)OpenAI預(yù)計(jì)將在2026年虧損140億美元,而且可能要到2028年才能實(shí)現(xiàn)收支平衡。該報(bào)告的分析基于OpenAI與投資者共享的財(cái)務(wù)文件。
如果客戶能夠通過(guò)使用MiniMax的開(kāi)源人工智能模型獲得與OpenAI模型相同的性能表現(xiàn),這可能會(huì)削弱市場(chǎng)對(duì)OpenAI產(chǎn)品的需求。OpenAI已在大幅降低其最強(qiáng)大模型的定價(jià)以穩(wěn)固市場(chǎng)份額。最近,它將o3推理模型的使用成本削減了80%,而這還是在MiniMax發(fā)布M1之前。
MiniMax的報(bào)告結(jié)果還意味著,企業(yè)在運(yùn)行這些模型時(shí)可能無(wú)需投入過(guò)多計(jì)算成本,此情況可能會(huì)波及亞馬遜AWS、微軟Azure和谷歌云平臺(tái)等云服務(wù)提供商的利潤(rùn)。同時(shí),這可能導(dǎo)致對(duì)英偉達(dá)芯片的需求減少,而英偉達(dá)芯片是人工智能數(shù)據(jù)中心的核心硬件。
MiniMax的M1最終產(chǎn)生的影響可能與今年早些時(shí)候深度求索(總部位于杭州)發(fā)布其R1大型語(yǔ)言模型時(shí)的情況類(lèi)似。當(dāng)時(shí),深度求索宣稱R1的性能與ChatGPT相當(dāng),但訓(xùn)練成本僅為ChatGPT的一小部分,這一聲明導(dǎo)致英偉達(dá)股價(jià)單日下跌17%,市值蒸發(fā)約6000億美元。截至目前,MiniMax的消息尚未引發(fā)類(lèi)似波動(dòng)。本周英偉達(dá)股價(jià)跌幅不到0.5%,不過(guò),如果MiniMax的M1能像深度求索的R1模型那樣得到廣泛應(yīng)用,情況可能會(huì)發(fā)生變化。
MiniMax關(guān)于M1的聲明尚未得到驗(yàn)證
不同之處在于,獨(dú)立開(kāi)發(fā)者尚未證實(shí)MiniMax關(guān)于M1的聲明。以深度求索的R1為例,開(kāi)發(fā)者迅速確認(rèn)該模型性能確實(shí)如公司所宣稱的那般出色;而蝴蝶效應(yīng)科技的Manus模型在開(kāi)發(fā)者測(cè)試中暴露出易出錯(cuò)的缺陷,無(wú)法達(dá)到公司演示的效果,初期熱度迅速消退。未來(lái)幾天將成為關(guān)鍵節(jié)點(diǎn)——開(kāi)發(fā)者是接納M1,還是反應(yīng)冷淡,屆時(shí)自會(huì)見(jiàn)分曉。
MiniMax背后有騰訊、阿里巴巴等中國(guó)頭部科技公司支持。目前尚不清楚該公司員工規(guī)模,其首席執(zhí)行官閆俊杰的公開(kāi)信息也極為有限。除了MiniMax Chat外,該公司還推出了圖像生成工具Hailuo AI和虛擬形象應(yīng)用Talkie。據(jù)MiniMax稱,這些產(chǎn)品在200多個(gè)國(guó)家和地區(qū)擁有數(shù)千萬(wàn)用戶,以及5萬(wàn)家企業(yè)客戶,其中許多企業(yè)被Hailuo AI能夠即時(shí)生成視頻游戲的能力所吸引。
然而,沒(méi)有什么比免費(fèi)試用更能吸引客戶。目前,想要試用MiniMax M1的用戶可通過(guò)其運(yùn)行的API免費(fèi)試用,開(kāi)發(fā)者還能免費(fèi)下載整個(gè)模型并在自有計(jì)算資源上運(yùn)行(不過(guò)在這種情況下,開(kāi)發(fā)者需自行承擔(dān)計(jì)算時(shí)間費(fèi)用)。如果MiniMax的能力如該公司所宣稱的那樣,無(wú)疑會(huì)收獲一定的關(guān)注度。
M1的另一大核心賣(mài)點(diǎn)在于其具備100萬(wàn)令牌的“上下文窗口”。令牌是數(shù)據(jù)單元,大致相當(dāng)于四分之三單詞的文本量,上下文窗口指模型生成單次回應(yīng)時(shí)可使用的數(shù)據(jù)上限。100萬(wàn)令牌大致相當(dāng)于七到八本書(shū)或一小時(shí)的視頻內(nèi)容——這意味著M1能處理的數(shù)據(jù)量超過(guò)部分頂尖模型:例如,OpenAI的o3和Anthropic的Claude Opus 4的上下文窗口僅約20萬(wàn)令牌。不過(guò),Gemini 2.5 Pro同樣擁有100萬(wàn)令牌的上下文窗口,而Meta的部分開(kāi)源Llama模型上下文窗口甚至可達(dá)1000萬(wàn)令牌。
一位X用戶寫(xiě)道:“MiniMax M1太瘋狂了!”他聲稱自己在毫無(wú)編程基礎(chǔ)的情況下,僅用60秒就生成了一個(gè)網(wǎng)飛(Netflix)克隆版——包括電影預(yù)告片、實(shí)時(shí)網(wǎng)站以及“完美響應(yīng)式設(shè)計(jì)”。 (財(cái)富中文網(wǎng))
譯者:中慧言-王芳
中國(guó)人工智能公司MiniMax推出全新人工智能模型M1,稱其性能可與OpenAI、Anthropic和谷歌DeepMind等實(shí)驗(yàn)室的頂級(jí)模型相抗衡,而訓(xùn)練成本卻僅為后者的一小部分,且運(yùn)行成本也更低。
此類(lèi)情形早已屢見(jiàn)不鮮:每隔數(shù)月,一家在美國(guó)籍籍無(wú)名的中國(guó)人工智能實(shí)驗(yàn)室便會(huì)發(fā)布一款人工智能模型,顛覆人們對(duì)訓(xùn)練與運(yùn)行前沿人工智能所需成本的傳統(tǒng)認(rèn)知。
今年1月,深度求索(DeepSeek)的R1模型引發(fā)全球轟動(dòng);3月,一家名為蝴蝶效應(yīng)科技(Butterfly Effect,注冊(cè)地在新加坡,但團(tuán)隊(duì)大部分成員在中國(guó))的初創(chuàng)公司及其“代理人工智能”模型Manus曾短暫成為焦點(diǎn);本周,總部位于上海的初創(chuàng)公司MiniMax憑借6月16日推出的M1模型成為人工智能行業(yè)熱議的焦點(diǎn)——此前,該公司因發(fā)布人工智能生成的視頻游戲而聞名。
根據(jù)MiniMax公布的數(shù)據(jù),M1模型在智能和創(chuàng)造力方面可與OpenAI、Anthropic和深度求索的頂尖模型相抗衡,然而其訓(xùn)練和運(yùn)行成本卻低得驚人。
該公司表示,僅花費(fèi)53.47萬(wàn)美元租用數(shù)據(jù)中心計(jì)算資源用于訓(xùn)練M1,這比ChatGPT-4o的訓(xùn)練成本預(yù)估值低近200倍。行業(yè)專(zhuān)家稱,ChatGPT-4o的訓(xùn)練成本可能超過(guò)1億美元(OpenAI尚未公布其訓(xùn)練成本數(shù)據(jù))。
如果這一數(shù)據(jù)準(zhǔn)確無(wú)誤(MiniMax的說(shuō)法尚未得到獨(dú)立驗(yàn)證),那么那些向OpenAI和Anthropic等私有大型語(yǔ)言模型制造商投入數(shù)千億美元的藍(lán)籌股投資者,以及微軟和谷歌的股東,很可能會(huì)因此感到不安。這是因?yàn)槿斯ぶ悄軜I(yè)務(wù)目前處于嚴(yán)重虧損狀態(tài);據(jù)科技媒體《The Information》10月的一份報(bào)告稱,行業(yè)領(lǐng)軍企業(yè)OpenAI預(yù)計(jì)將在2026年虧損140億美元,而且可能要到2028年才能實(shí)現(xiàn)收支平衡。該報(bào)告的分析基于OpenAI與投資者共享的財(cái)務(wù)文件。
如果客戶能夠通過(guò)使用MiniMax的開(kāi)源人工智能模型獲得與OpenAI模型相同的性能表現(xiàn),這可能會(huì)削弱市場(chǎng)對(duì)OpenAI產(chǎn)品的需求。OpenAI已在大幅降低其最強(qiáng)大模型的定價(jià)以穩(wěn)固市場(chǎng)份額。最近,它將o3推理模型的使用成本削減了80%,而這還是在MiniMax發(fā)布M1之前。
MiniMax的報(bào)告結(jié)果還意味著,企業(yè)在運(yùn)行這些模型時(shí)可能無(wú)需投入過(guò)多計(jì)算成本,此情況可能會(huì)波及亞馬遜AWS、微軟Azure和谷歌云平臺(tái)等云服務(wù)提供商的利潤(rùn)。同時(shí),這可能導(dǎo)致對(duì)英偉達(dá)芯片的需求減少,而英偉達(dá)芯片是人工智能數(shù)據(jù)中心的核心硬件。
MiniMax的M1最終產(chǎn)生的影響可能與今年早些時(shí)候深度求索(總部位于杭州)發(fā)布其R1大型語(yǔ)言模型時(shí)的情況類(lèi)似。當(dāng)時(shí),深度求索宣稱R1的性能與ChatGPT相當(dāng),但訓(xùn)練成本僅為ChatGPT的一小部分,這一聲明導(dǎo)致英偉達(dá)股價(jià)單日下跌17%,市值蒸發(fā)約6000億美元。截至目前,MiniMax的消息尚未引發(fā)類(lèi)似波動(dòng)。本周英偉達(dá)股價(jià)跌幅不到0.5%,不過(guò),如果MiniMax的M1能像深度求索的R1模型那樣得到廣泛應(yīng)用,情況可能會(huì)發(fā)生變化。
MiniMax關(guān)于M1的聲明尚未得到驗(yàn)證
不同之處在于,獨(dú)立開(kāi)發(fā)者尚未證實(shí)MiniMax關(guān)于M1的聲明。以深度求索的R1為例,開(kāi)發(fā)者迅速確認(rèn)該模型性能確實(shí)如公司所宣稱的那般出色;而蝴蝶效應(yīng)科技的Manus模型在開(kāi)發(fā)者測(cè)試中暴露出易出錯(cuò)的缺陷,無(wú)法達(dá)到公司演示的效果,初期熱度迅速消退。未來(lái)幾天將成為關(guān)鍵節(jié)點(diǎn)——開(kāi)發(fā)者是接納M1,還是反應(yīng)冷淡,屆時(shí)自會(huì)見(jiàn)分曉。
MiniMax背后有騰訊、阿里巴巴等中國(guó)頭部科技公司支持。目前尚不清楚該公司員工規(guī)模,其首席執(zhí)行官閆俊杰的公開(kāi)信息也極為有限。除了MiniMax Chat外,該公司還推出了圖像生成工具Hailuo AI和虛擬形象應(yīng)用Talkie。據(jù)MiniMax稱,這些產(chǎn)品在200多個(gè)國(guó)家和地區(qū)擁有數(shù)千萬(wàn)用戶,以及5萬(wàn)家企業(yè)客戶,其中許多企業(yè)被Hailuo AI能夠即時(shí)生成視頻游戲的能力所吸引。
然而,沒(méi)有什么比免費(fèi)試用更能吸引客戶。目前,想要試用MiniMax M1的用戶可通過(guò)其運(yùn)行的API免費(fèi)試用,開(kāi)發(fā)者還能免費(fèi)下載整個(gè)模型并在自有計(jì)算資源上運(yùn)行(不過(guò)在這種情況下,開(kāi)發(fā)者需自行承擔(dān)計(jì)算時(shí)間費(fèi)用)。如果MiniMax的能力如該公司所宣稱的那樣,無(wú)疑會(huì)收獲一定的關(guān)注度。
M1的另一大核心賣(mài)點(diǎn)在于其具備100萬(wàn)令牌的“上下文窗口”。令牌是數(shù)據(jù)單元,大致相當(dāng)于四分之三單詞的文本量,上下文窗口指模型生成單次回應(yīng)時(shí)可使用的數(shù)據(jù)上限。100萬(wàn)令牌大致相當(dāng)于七到八本書(shū)或一小時(shí)的視頻內(nèi)容——這意味著M1能處理的數(shù)據(jù)量超過(guò)部分頂尖模型:例如,OpenAI的o3和Anthropic的Claude Opus 4的上下文窗口僅約20萬(wàn)令牌。不過(guò),Gemini 2.5 Pro同樣擁有100萬(wàn)令牌的上下文窗口,而Meta的部分開(kāi)源Llama模型上下文窗口甚至可達(dá)1000萬(wàn)令牌。
一位X用戶寫(xiě)道:“MiniMax M1太瘋狂了!”他聲稱自己在毫無(wú)編程基礎(chǔ)的情況下,僅用60秒就生成了一個(gè)網(wǎng)飛(Netflix)克隆版——包括電影預(yù)告片、實(shí)時(shí)網(wǎng)站以及“完美響應(yīng)式設(shè)計(jì)”。 (財(cái)富中文網(wǎng))
譯者:中慧言-王芳
It’s becoming a familiar pattern: Every few months, an AI lab in China that most people in the U.S. have never heard of releases an AI model that upends conventional wisdom about the cost of training and running cutting-edge AI.
In January, it was DeepSeek’s R1 that took the world by storm. Then in March, it was a startup called Butterfly Effect—technically based in Singapore but with most of its team in China—and its “agentic AI” model, Manus, that briefly captured the spotlight. This week, it’s a Shanghai-based upstart called MiniMax, best known previously for releasing AI-generated video games, that is the talk of the AI industry thanks to the M1 model it debuted on June 16.
According to data published by MiniMax, its M1 is competitive with top models from OpenAI, Anthropic, and DeepSeek when it comes to both intelligence and creativity, but is dirt cheap to train and run.
The company says it spent just $534,700 renting the data center computing resources needed to train M1. This is nearly 200-fold cheaper than estimates of the training cost of ChatGPT-4o, which, industry experts say, likely exceeded $100 million (OpenAI has not released its training cost figures).
If accurate—and MiniMax’s claims have yet to be independently verified—this figure will likely cause some agita among blue-chip investors who’ve sunk hundreds of billions into private LLM makers like OpenAI and Anthropic, as well as Microsoft and Google shareholders. This is because the AI business is deeply unprofitable; industry leader OpenAI is likely on track to lose $14 billion in 2026 and is unlikely to break even until 2028, according to an October report from tech publication The Information, which based its analysis on OpenAI financial documents that had been shared with investors.
If customers can get the same performance as OpenAI’s models by using MiniMax’s open-source AI models, it will likely dent demand for OpenAI’s products. OpenAI has already been aggressively lowering the pricing of its most capable models to retain market share. It recently slashed the cost of using its o3 reasoning model by 80%. And that was before MiniMax’s M1 release.
MiniMax’s reported results also mean that businesses may not need to spend as much on computing costs to run these models, potentially denting profits for cloud providers such as Amazon’s AWS, Microsoft’s Azure, and Google’s Google Cloud Platform. And it may mean less demand for Nvidia’s chips, which are the workhorses of AI data centers.
The impact of MiniMax’s M1 may ultimately be similar to what happened when Hangzhou-based DeepSeek released its R1 LLM model earlier this year. DeepSeek claimed that R1 functioned on par with ChatGPT at a fraction of the training cost. DeepSeek’s statement sank Nvidia’s stock by 17% in a single day—erasing about $600 billion in market value. So far, that hasn’t happened with the MiniMax news. Nvidia’s shares have fallen less than 0.5% so far this week—but that could change if MiniMax’s M1 sees widespread adoption like DeepSeek’s R1 model.
MiniMax’s claims about M1 have not yet been verified
The difference may be that independent developers have yet to confirm MiniMax’s claims about M1. In the case of DeepSeek’s R1, developers quickly determined that the model’s performance was indeed as good as the company said. With Butterfly Effect’s Manus, however, the initial buzz faded fast after developers testing Manus found that the model seemed error-prone and couldn’t match what the company had demonstrated. The coming days will prove critical in determining whether developers embrace M1 or respond more tepidly.
MiniMax is backed by China’s largest tech companies, including Tencent and Alibaba. It is unclear how many people work at the company, and there is little public information about its CEO, Yan Junjie. Aside from MiniMax Chat, the company also offers graphic generator Hailuo AI and avatar app Talkie. Through these products, MiniMax claims tens of millions of users across 200 countries and regions as well as 50,000 enterprise clients, a number of whom were drawn to Hailuo for its ability to generate video games on the fly.
But few things win customers more than free access. Right now, those who want to try MiniMax’s M1 can do so for free through an API MiniMax runs. Developers can also download the entire model for free and run it on their own computing resources (although in that case, the developers have to pay for the compute time). If MiniMax’s capabilities are what the company claims, it will no doubt gain some traction.
The other big selling point for M1 is that it has a “context window” of 1 million tokens. A token is a chunk of data, equivalent to about three-quarters of one word of text, and a context window is the limit of how much data the model can use to generate a single response. One million tokens is equivalent to about seven or eight books or one hour of video content. The 1 million–token context window for M1 means it can take in more data than some of the top-performing models: OpenAI’s o3 and Anthropic’s Claude Opus 4, for example, both have context windows of only about 200,000 tokens. Gemini 2.5 Pro, however, also has a 1 million–token context window, and some of Meta’s open-source Llama models have context windows of up to 10 million tokens.
“MiniMax M1 is INSANE!” writes one X user who claims to have made a Netflix clone—complete with movie trailers, a live website, and “perfect responsive design” in 60 seconds with “zero” coding knowledge.