
? 美國(guó)國(guó)家經(jīng)濟(jì)研究局(NBER)一份結(jié)合丹麥企業(yè)記錄分析人工智能使用情況的工作論文表明,盡管數(shù)百個(gè)白領(lǐng)工作場(chǎng)所已部署人工智能聊天機(jī)器人,但總體而言,其對(duì)工時(shí)和薪資的影響微乎其微。平均而言,員工節(jié)省了3%的時(shí)間,而生產(chǎn)力提升中僅有3%-7%以加薪形式反饋給員工。
自O(shè)penAI兩年多前發(fā)布ChatGPT以來,人工智能聊天機(jī)器人已成為歷史上普及速度最快的技術(shù),堪比三十年前的個(gè)人電腦。其流行催生并顛覆了整套職位描述,推高企業(yè)估值至巔峰后又回落凡間。
然而,首份結(jié)合就業(yè)數(shù)據(jù)研究人工智能使用情況的研究發(fā)現(xiàn),該技術(shù)對(duì)時(shí)間和薪酬的影響微乎其微。
經(jīng)濟(jì)學(xué)家安德斯·胡姆勒姆(Anders Humlum)和艾米莉·維斯特加德(Emilie Vestergaard)在本周發(fā)布的美國(guó)國(guó)家經(jīng)濟(jì)研究局工作論文中寫道:"人工智能聊天機(jī)器人對(duì)任何職業(yè)的收入或記錄工時(shí)均無顯著影響?!?/p>
芝加哥大學(xué)布斯商學(xué)院經(jīng)濟(jì)學(xué)助理教授胡姆勒姆和哥本哈根大學(xué)經(jīng)濟(jì)學(xué)博士生艾米莉·維斯特加德研究了7000個(gè)工作場(chǎng)所的2.5萬名員工,重點(diǎn)關(guān)注被認(rèn)為易受人工智能沖擊的職業(yè):會(huì)計(jì)師、客戶支持專員、財(cái)務(wù)顧問、人力資源專員、信息技術(shù)支持專員、記者、法律專業(yè)者、營(yíng)銷人員、辦公室文員、軟件開發(fā)人員和教師。
他們提取了丹麥數(shù)據(jù)——該國(guó)的人工智能采用率及雇傭解雇模式與美國(guó)相似,但記錄更為詳盡,使研究能夠?qū)⒄{(diào)查反饋與實(shí)際工時(shí)和薪資記錄匿名匹配。
研究人員發(fā)現(xiàn),在工作中使用人工智能的用戶平均節(jié)省了3%的時(shí)間。部分人節(jié)省時(shí)間更多,但薪酬并未提高,生產(chǎn)力提升中僅有3%-7%轉(zhuǎn)化為薪資增長(zhǎng)。
換言之,研究雖未發(fā)現(xiàn)大規(guī)模取代人類員工的現(xiàn)象,但也未觀察到生產(chǎn)力的突破性增長(zhǎng)或人工智能賦能型“超級(jí)員工”的薪酬躍升。
作者寫道:“盡管人工智能技術(shù)普及速度很快,企業(yè)正加大投資以釋放其技術(shù)潛力,但其對(duì)經(jīng)濟(jì)的影響依然有限。”
生產(chǎn)力遭遇阻礙
在企業(yè)加速部署人工智能技術(shù)的背景下,這些研究結(jié)果可能會(huì)讓人大吃一驚:從多鄰國(guó)(Duolingo)用人工智能取代其合同工,到Shopify宣布將人工智能作為優(yōu)先雇傭選擇、人類員工退居次位。與此同時(shí),投資者一直在推高人工智能相關(guān)公司的股價(jià)。
但胡姆勒姆表示,美國(guó)國(guó)家經(jīng)濟(jì)研究局的論文并非否定此前關(guān)于人工智能提升生產(chǎn)力的研究結(jié)論,只是說明其不夠全面。
此前的大多數(shù)研究“恰恰聚焦于節(jié)省時(shí)間最多的職業(yè)上”,胡姆勒姆告訴《財(cái)富》雜志。
“軟件開發(fā)、編寫代碼、撰寫營(yíng)銷文案、為人力資源專員撰寫招聘啟事——這些是人工智能能加速完成的任務(wù)。但在更廣泛的職業(yè)調(diào)查中,即便人工智能仍有輔助作用,時(shí)間節(jié)省幅度要小得多?!?/p>
人工智能技術(shù)總體影響平平還涉及其他因素,如雇主的支持度和員工自身的時(shí)間管理。
“我可能使用大型語言模型起草電子郵件節(jié)省了時(shí)間,但重要的問題是,我如何利用這些節(jié)省下來的時(shí)間?”他說,“員工將工作重心轉(zhuǎn)向邊緣任務(wù)時(shí),這些任務(wù)是否富有成效?”
在這項(xiàng)研究中,員工將超80%的節(jié)省時(shí)間分配給其他工作任務(wù)(只有不足10%的人表示增加了休息或休閑時(shí)間),包括因使用人工智能而產(chǎn)生的新任務(wù),比如編輯人工智能生成的文案,或者就胡姆勒姆自己而言,調(diào)整考試題目以防范學(xué)生使用人工智能作弊。
還有一個(gè)事實(shí)是,真實(shí)的工作場(chǎng)所比結(jié)構(gòu)化實(shí)驗(yàn)復(fù)雜得多。
“在現(xiàn)實(shí)世界中,許多員工甚至在未獲得老板認(rèn)可的情況下使用這些工具。有些人不清楚是否允許使用;有些人雖得到允許卻未得到真正鼓勵(lì),”胡姆勒姆說,“在未明確鼓勵(lì)使用人工智能的工作場(chǎng)所中,員工很難向老板提出‘我因人工智能提升了效率,想承擔(dān)更多工作’,更遑論基于生產(chǎn)力提升協(xié)商加薪?!?/p>
當(dāng)然,員工們可能并不愿意宣揚(yáng)人工智能提升了自身效率,尤其是考慮到那句老生常談:高效工作的回報(bào)就是更多的工作。
胡姆勒姆說,關(guān)于未使用人工智能的工作場(chǎng)所的工時(shí)和薪資的部分研究發(fā)現(xiàn),“表明員工并不急于主動(dòng)向老板要求更多工作”。
厚望之下,成效中等
美國(guó)國(guó)家經(jīng)濟(jì)研究局的論文發(fā)布之際,其他跡象也表明,人工智能技術(shù)的潛力雖然巨大,但在媒體和市場(chǎng)中被嚴(yán)重夸大。
支付處理商Klarna去年因披露停止雇傭人類、轉(zhuǎn)而使用高生產(chǎn)力的人工智能而引起軒然大波,最近該公司已修正過于激進(jìn)的表述。
IBM對(duì)2000名首席執(zhí)行官進(jìn)行的一項(xiàng)調(diào)查顯示,只有25%的人工智能項(xiàng)目達(dá)成預(yù)期投資回報(bào)率。研究顯示,推動(dòng)企業(yè)采用人工智能的主要因素似乎是“錯(cuò)失恐懼癥”(FOMO),近三分之二的首席執(zhí)行官認(rèn)為“落后風(fēng)險(xiǎn)促使他們?cè)谏形戳私馇宄承┘夹g(shù)能為組織帶來何種價(jià)值之前就進(jìn)行投資”。
諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)得主達(dá)龍·阿西莫格魯(Daron Acemoglu)對(duì)自動(dòng)化和勞動(dòng)力進(jìn)行了深入研究,他估計(jì),人工智能在未來十年對(duì)生產(chǎn)力的提升約為國(guó)內(nèi)生產(chǎn)總值的1.1%至1.6%,這對(duì)美國(guó)這樣的發(fā)達(dá)經(jīng)濟(jì)體而言是相當(dāng)大的提升,但與部分技術(shù)專家預(yù)測(cè)的國(guó)內(nèi)生產(chǎn)總值翻番相去甚遠(yuǎn)。
他去年為《財(cái)富》雜志撰文稱,人工智能的風(fēng)險(xiǎn)在于“這種炒作可能會(huì)持續(xù)一段時(shí)間,且在此過程中造成的沖擊遠(yuǎn)超專家預(yù)期”。事實(shí)上,“任何技術(shù)革命要實(shí)現(xiàn)生產(chǎn)力轉(zhuǎn)化,都必須依托組織架構(gòu)革新、系統(tǒng)性配套投資以及通過培訓(xùn)與在職學(xué)習(xí)來提高員工技能。”
胡姆勒姆與維斯特加德的研究進(jìn)一步佐證了這一發(fā)現(xiàn),他們的論文顯示,員工使用人工智能并接受相關(guān)培訓(xùn)時(shí),生產(chǎn)力提升更為顯著。
這也可能只是時(shí)間問題。畢竟,工業(yè)革命持續(xù)了一個(gè)世紀(jì),在蒸汽機(jī)發(fā)明許久后才真正改變?nèi)祟惿a(chǎn)生活方式。
胡姆勒姆說:“我們花了數(shù)十年時(shí)間才意識(shí)到,可用電力驅(qū)動(dòng)流水線,而非通過蒸汽機(jī)集中驅(qū)動(dòng)一切?!保ㄘ?cái)富中文網(wǎng))
譯者:中慧言-王芳
? 美國(guó)國(guó)家經(jīng)濟(jì)研究局(NBER)一份結(jié)合丹麥企業(yè)記錄分析人工智能使用情況的工作論文表明,盡管數(shù)百個(gè)白領(lǐng)工作場(chǎng)所已部署人工智能聊天機(jī)器人,但總體而言,其對(duì)工時(shí)和薪資的影響微乎其微。平均而言,員工節(jié)省了3%的時(shí)間,而生產(chǎn)力提升中僅有3%-7%以加薪形式反饋給員工。
自O(shè)penAI兩年多前發(fā)布ChatGPT以來,人工智能聊天機(jī)器人已成為歷史上普及速度最快的技術(shù),堪比三十年前的個(gè)人電腦。其流行催生并顛覆了整套職位描述,推高企業(yè)估值至巔峰后又回落凡間。
然而,首份結(jié)合就業(yè)數(shù)據(jù)研究人工智能使用情況的研究發(fā)現(xiàn),該技術(shù)對(duì)時(shí)間和薪酬的影響微乎其微。
經(jīng)濟(jì)學(xué)家安德斯·胡姆勒姆(Anders Humlum)和艾米莉·維斯特加德(Emilie Vestergaard)在本周發(fā)布的美國(guó)國(guó)家經(jīng)濟(jì)研究局工作論文中寫道:"人工智能聊天機(jī)器人對(duì)任何職業(yè)的收入或記錄工時(shí)均無顯著影響?!?/p>
芝加哥大學(xué)布斯商學(xué)院經(jīng)濟(jì)學(xué)助理教授胡姆勒姆和哥本哈根大學(xué)經(jīng)濟(jì)學(xué)博士生艾米莉·維斯特加德研究了7000個(gè)工作場(chǎng)所的2.5萬名員工,重點(diǎn)關(guān)注被認(rèn)為易受人工智能沖擊的職業(yè):會(huì)計(jì)師、客戶支持專員、財(cái)務(wù)顧問、人力資源專員、信息技術(shù)支持專員、記者、法律專業(yè)者、營(yíng)銷人員、辦公室文員、軟件開發(fā)人員和教師。
他們提取了丹麥數(shù)據(jù)——該國(guó)的人工智能采用率及雇傭解雇模式與美國(guó)相似,但記錄更為詳盡,使研究能夠?qū)⒄{(diào)查反饋與實(shí)際工時(shí)和薪資記錄匿名匹配。
研究人員發(fā)現(xiàn),在工作中使用人工智能的用戶平均節(jié)省了3%的時(shí)間。部分人節(jié)省時(shí)間更多,但薪酬并未提高,生產(chǎn)力提升中僅有3%-7%轉(zhuǎn)化為薪資增長(zhǎng)。
換言之,研究雖未發(fā)現(xiàn)大規(guī)模取代人類員工的現(xiàn)象,但也未觀察到生產(chǎn)力的突破性增長(zhǎng)或人工智能賦能型“超級(jí)員工”的薪酬躍升。
作者寫道:“盡管人工智能技術(shù)普及速度很快,企業(yè)正加大投資以釋放其技術(shù)潛力,但其對(duì)經(jīng)濟(jì)的影響依然有限?!?/p>
生產(chǎn)力遭遇阻礙
在企業(yè)加速部署人工智能技術(shù)的背景下,這些研究結(jié)果可能會(huì)讓人大吃一驚:從多鄰國(guó)(Duolingo)用人工智能取代其合同工,到Shopify宣布將人工智能作為優(yōu)先雇傭選擇、人類員工退居次位。與此同時(shí),投資者一直在推高人工智能相關(guān)公司的股價(jià)。
但胡姆勒姆表示,美國(guó)國(guó)家經(jīng)濟(jì)研究局的論文并非否定此前關(guān)于人工智能提升生產(chǎn)力的研究結(jié)論,只是說明其不夠全面。
此前的大多數(shù)研究“恰恰聚焦于節(jié)省時(shí)間最多的職業(yè)上”,胡姆勒姆告訴《財(cái)富》雜志。
“軟件開發(fā)、編寫代碼、撰寫營(yíng)銷文案、為人力資源專員撰寫招聘啟事——這些是人工智能能加速完成的任務(wù)。但在更廣泛的職業(yè)調(diào)查中,即便人工智能仍有輔助作用,時(shí)間節(jié)省幅度要小得多。”
人工智能技術(shù)總體影響平平還涉及其他因素,如雇主的支持度和員工自身的時(shí)間管理。
“我可能使用大型語言模型起草電子郵件節(jié)省了時(shí)間,但重要的問題是,我如何利用這些節(jié)省下來的時(shí)間?”他說,“員工將工作重心轉(zhuǎn)向邊緣任務(wù)時(shí),這些任務(wù)是否富有成效?”
在這項(xiàng)研究中,員工將超80%的節(jié)省時(shí)間分配給其他工作任務(wù)(只有不足10%的人表示增加了休息或休閑時(shí)間),包括因使用人工智能而產(chǎn)生的新任務(wù),比如編輯人工智能生成的文案,或者就胡姆勒姆自己而言,調(diào)整考試題目以防范學(xué)生使用人工智能作弊。
還有一個(gè)事實(shí)是,真實(shí)的工作場(chǎng)所比結(jié)構(gòu)化實(shí)驗(yàn)復(fù)雜得多。
“在現(xiàn)實(shí)世界中,許多員工甚至在未獲得老板認(rèn)可的情況下使用這些工具。有些人不清楚是否允許使用;有些人雖得到允許卻未得到真正鼓勵(lì),”胡姆勒姆說,“在未明確鼓勵(lì)使用人工智能的工作場(chǎng)所中,員工很難向老板提出‘我因人工智能提升了效率,想承擔(dān)更多工作’,更遑論基于生產(chǎn)力提升協(xié)商加薪?!?/p>
當(dāng)然,員工們可能并不愿意宣揚(yáng)人工智能提升了自身效率,尤其是考慮到那句老生常談:高效工作的回報(bào)就是更多的工作。
胡姆勒姆說,關(guān)于未使用人工智能的工作場(chǎng)所的工時(shí)和薪資的部分研究發(fā)現(xiàn),“表明員工并不急于主動(dòng)向老板要求更多工作”。
厚望之下,成效中等
美國(guó)國(guó)家經(jīng)濟(jì)研究局的論文發(fā)布之際,其他跡象也表明,人工智能技術(shù)的潛力雖然巨大,但在媒體和市場(chǎng)中被嚴(yán)重夸大。
支付處理商Klarna去年因披露停止雇傭人類、轉(zhuǎn)而使用高生產(chǎn)力的人工智能而引起軒然大波,最近該公司已修正過于激進(jìn)的表述。
IBM對(duì)2000名首席執(zhí)行官進(jìn)行的一項(xiàng)調(diào)查顯示,只有25%的人工智能項(xiàng)目達(dá)成預(yù)期投資回報(bào)率。研究顯示,推動(dòng)企業(yè)采用人工智能的主要因素似乎是“錯(cuò)失恐懼癥”(FOMO),近三分之二的首席執(zhí)行官認(rèn)為“落后風(fēng)險(xiǎn)促使他們?cè)谏形戳私馇宄承┘夹g(shù)能為組織帶來何種價(jià)值之前就進(jìn)行投資”。
諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)得主達(dá)龍·阿西莫格魯(Daron Acemoglu)對(duì)自動(dòng)化和勞動(dòng)力進(jìn)行了深入研究,他估計(jì),人工智能在未來十年對(duì)生產(chǎn)力的提升約為國(guó)內(nèi)生產(chǎn)總值的1.1%至1.6%,這對(duì)美國(guó)這樣的發(fā)達(dá)經(jīng)濟(jì)體而言是相當(dāng)大的提升,但與部分技術(shù)專家預(yù)測(cè)的國(guó)內(nèi)生產(chǎn)總值翻番相去甚遠(yuǎn)。
他去年為《財(cái)富》雜志撰文稱,人工智能的風(fēng)險(xiǎn)在于“這種炒作可能會(huì)持續(xù)一段時(shí)間,且在此過程中造成的沖擊遠(yuǎn)超專家預(yù)期”。事實(shí)上,“任何技術(shù)革命要實(shí)現(xiàn)生產(chǎn)力轉(zhuǎn)化,都必須依托組織架構(gòu)革新、系統(tǒng)性配套投資以及通過培訓(xùn)與在職學(xué)習(xí)來提高員工技能?!?
胡姆勒姆與維斯特加德的研究進(jìn)一步佐證了這一發(fā)現(xiàn),他們的論文顯示,員工使用人工智能并接受相關(guān)培訓(xùn)時(shí),生產(chǎn)力提升更為顯著。
這也可能只是時(shí)間問題。畢竟,工業(yè)革命持續(xù)了一個(gè)世紀(jì),在蒸汽機(jī)發(fā)明許久后才真正改變?nèi)祟惿a(chǎn)生活方式。
胡姆勒姆說:“我們花了數(shù)十年時(shí)間才意識(shí)到,可用電力驅(qū)動(dòng)流水線,而非通過蒸汽機(jī)集中驅(qū)動(dòng)一切?!保ㄘ?cái)富中文網(wǎng))
譯者:中慧言-王芳
。
? AI chatbots have been rolled out across hundreds of white-collar workplaces, but on average, their effect on hours and pay has been negligible, according to a National Bureau of Economic Research working paper linking AI use to corporate records in Denmark. On average, employees saved 3% of their time, while just 3%-7% of their productivity gains came back to them in the form of higher pay.
Since OpenAI rolled out ChatGPT just over two years ago, AI chatbots have become the fastest-adopted technologies in history, rivaling the PC three decades ago. Their popularity has created and destroyed entire job descriptions and sent company valuations into the stratosphere—then back down to earth.
And yet, one of the first studies to look at AI use in conjunction with employment data finds the technology’s effect on time and money to be negligible.
“AI chatbots have had no significant impact on earnings or recorded hours in any occupation,” economists Anders Humlum and Emilie Vestergaard wrote in a National Bureau of Economic Research working paper released this week.
Humlum, an assistant professor of economics at the University of Chicago’s Booth School of Business, and Emilie Vestergaard, an economics PhD student at the University of Copenhagen, looked at 25,000 workers across 7,000 workspaces, focusing on occupations believed to be susceptible to disruption by AI: accountants, customer support specialists, financial advisors, HR professionals, IT support specialists, journalists, legal professionals, marketing professionals, office clerks, software developers, and teachers.
They pulled records from Denmark, a country whose rates of AI adoption as well as hiring and firing practices are similar to those in the U.S. but where record-keeping is far more detailed, allowing the study to anonymously match survey responses to records of actual hours and pay.
On average, users of AI at work had a time savings of 3%, the researchers found. Some saved more time, but didn’t see better pay, with just 3%-7% of productivity gains being passed on to paychecks.
In other words, while they found no mass displacement of human workers, neither did they see transformed productivity or hefty raises for AI-wielding superworkers.
“While adoption has been rapid, with firms now heavily invested in unlocking the technological potential, the economic impacts remain small,” the authors write.
Productivity, interrupted
The findings might be a surprise against the backdrop of aggressive corporate adoption of AI: from Duolingo replacing its contract workers with AI to Shopify decreeing it will only hire humans as a second choice to AI. Meanwhile, investors have been bidding up shares of companies involved in AI.
But the NBER paper doesn’t mean that earlier findings of AI’s productivity boost have been wrong, said Humlum—just incomplete.
Most of the earlier research has focused “exactly on the occupations where the time savings are largest,” Humlum told Fortune.
“Software, writing code, writing marketing tasks, writing job posts for HR professionals—these are the tasks the AI can speed up. But in a broader occupational survey, where AI can still be helpful, we see much smaller savings,” he said.
Other factors that explain AI’s overall ho-hum impact include employer buy-in and employees’ own time management.
“I might save time drafting an email using a large language model, so I save some time there, but the important question is, what do I use that time savings for?” he said. “Is the marginal task I’m shifting my work toward a productive task?”
Workers in the study allocated more than 80% of their saved time to other work tasks (less than 10% said they took more breaks or leisure time), including new tasks created by the use of AI, such as editing AI-generated copy, or, in Humlum’s own case, adjusting exams to make sure that students aren’t using AI to cheat.
There’s also the fact that real workplaces are much messier than structured experiments.
“In the real world, many workers are using these tools without even the endorsement of the boss. Some don’t even know if they’re allowed to use it; some are allowed but not really encouraged to use it,” Humlum said. “In a workplace where it’s not explicitly encouraged, there’s limited space to go to your boss and say, ‘I’d like to take on more work because AI has made me more productive,’” let alone negotiate for higher pay based on higher productivity.
And of course, employees might not want to advertise how much more productive AI has made them, especially considering the well-trod adage that the reward for efficient workers is more work.
Some of the findings around hours and pay in workplaces where AI isn’t used “suggest that workers are not exactly knocking on the boss’s door asking for more work,” Humlum said.
Great expectations, mid results
The NBER paper comes on the heels of other indications suggesting that AI’s potential, while tremendous, has been vastly overstated in the media and the market.
Payment processor Klarna, which made waves last year when it revealed it stopped hiring humans in favor of a super-productive AI, recently tempered its rhetoric.
An IBM survey of 2,000 CEOs revealed that just 25% of AI projects deliver on their promised return on investment. The main driver of adoption, it seems, is corporate FOMO, with nearly two-thirds of CEOs agreeing that “the risk of falling behind drives them to invest in some technologies before they have a clear understanding of the value they bring to the organization,” according to the study.
Nobel laureate Daron Acemoglu, who has extensively researched automation and labor, estimates AI’s productivity boost at approximately 1.1% to 1.6% of GDP in the next decade—a sizable boost for an advanced economy like the U.S., but far from the doubling of GDP some technologists have predicted.
The danger with AI is that “the hype will likely go on for a while and do much more damage in the process than experts are anticipating,” he wrote for Fortune last year. In fact, “getting productivity gains from any technology requires organizational adjustment, a range of complementary investments, and improvements in worker skills, via training and on-the-job learning,” he said.
That’s a finding backed up by Humlum and Vestegaard, whose paper showed greater productivity gains when employers encouraged AI use and trained workers in it.
It could also be just a matter of time. After all, the Industrial Revolution went on for a century, transforming how people lived and worked long after the invention of the steam engine.
“It took a couple decades to see that we can have an assembly line powered by electricity instead of having everything run centrally via a steam engine,” Humlum said.