国产一精品一AV一免费,亚洲成AV人片不卡无码,AV永久天堂一区二区三区,国产激情久久久久影院

訂閱

多平臺(tái)閱讀

微信訂閱

雜志

申請(qǐng)紙刊贈(zèng)閱

訂閱每日電郵

移動(dòng)應(yīng)用

專欄 - 從華爾街到硅谷

創(chuàng)業(yè)公司怎樣才能“打倒”彭博終端?

Matt Turck 2014年03月26日

Dan Primack專注于報(bào)道交易和交易撮合者,從美國(guó)金融業(yè)到風(fēng)險(xiǎn)投資業(yè)均有涉及。此前,Dan是湯森路透(Thomson Reuters)的自由編輯,推出了peHUB.com和peHUB Wire郵件服務(wù)。作為一名新聞工作者,Dan還曾在美國(guó)馬薩諸塞州羅克斯伯里經(jīng)營(yíng)一份社區(qū)報(bào)紙。目前他居住在波士頓附近。
彭博終端獲得長(zhǎng)期成功的一個(gè)重要原因是,除了數(shù)據(jù)和分析工具是它的賣點(diǎn)之外,更主要的是它本身基本上就是一個(gè)網(wǎng)絡(luò),是大量小眾產(chǎn)品的集合體,而且直到今天依然在不斷拓展,增加新的功能。不過,這并不意味著金融界的初創(chuàng)公司完全沒有創(chuàng)新空間。

????(2)它是很多小眾產(chǎn)品的集合。對(duì)于金融數(shù)據(jù)界來說,每個(gè)資產(chǎn)類別(包括其亞種)都有相當(dāng)?shù)奶厥庑?,人們可以針?duì)每個(gè)資產(chǎn)類別做出一個(gè)基本上完全不同的產(chǎn)品。這不僅需要深厚的專業(yè)知識(shí),也需要大量精力和財(cái)力,才能滿足每一個(gè)規(guī)模相對(duì)較小的用戶群(有時(shí)搞某一種資產(chǎn)類別的人全球加起來也只有幾萬(wàn)人)。彭博一開始做的是固定收入數(shù)據(jù),這么多年走過來,一路憑借雄厚的財(cái)力逐漸攻克了其它資產(chǎn)類別(而且直到今天,彭博的這種努力還在繼續(xù))。所以要挑戰(zhàn)彭博的地位,并不是研制一個(gè)“萬(wàn)金油”式產(chǎn)品那么簡(jiǎn)單,而是要投入海量的風(fēng)險(xiǎn)資金,在所有這些小眾領(lǐng)域都打造一個(gè)直接的競(jìng)爭(zhēng)對(duì)手。

????(3)不光是技術(shù)之爭(zhēng)。要想大范圍地提供金融數(shù)據(jù),并不只是一個(gè)純粹的技術(shù)問題,所以不是光靠研究出更好的收集和展示數(shù)據(jù)的技術(shù)就能解決問題。至少在現(xiàn)階段,彭博終端背后已經(jīng)有一張龐大的人力網(wǎng)絡(luò)、關(guān)系網(wǎng)絡(luò)和數(shù)據(jù)提供商的合同網(wǎng)絡(luò)支持它很多年了。

????(4)它是一個(gè)用于執(zhí)行極為重要的任務(wù)的產(chǎn)品。這是很關(guān)鍵的一點(diǎn)。在金融界,人們靠數(shù)據(jù)來做大賭局,所以絕對(duì)的精確性和可靠性必不可少。因此人們?cè)谠囉眯庐a(chǎn)品的時(shí)候難免心里會(huì)七上八下,尤其當(dāng)它還是一家創(chuàng)業(yè)公司的產(chǎn)品。

????就像《機(jī)構(gòu)投資人》的那篇文章中所講的一樣,彭博終端業(yè)務(wù)由于宏觀因素而受到了一些打擊(比如華爾街相關(guān)工作崗位的減少,以及全球范圍內(nèi)由傳統(tǒng)電腦數(shù)據(jù)向數(shù)據(jù)饋送轉(zhuǎn)變)。但是綜上所述,我認(rèn)為彭博終端短期內(nèi)不可能被任何創(chuàng)業(yè)公司完全“打倒”。而且我認(rèn)為對(duì)于創(chuàng)業(yè)公司來說,就算他們能拿到大量風(fēng)投資金,要想直接與彭博終端的任何核心功能競(jìng)爭(zhēng)(松綁)都是非常困難的事情。并不是說完全不可能實(shí)現(xiàn),我只是覺得如果創(chuàng)業(yè)公司把自己定位得離彭博遠(yuǎn)一點(diǎn),或許有機(jī)會(huì)摘到一些更容易摘到的果子。

????金融數(shù)據(jù)的商機(jī)在哪里?

????雖然我認(rèn)為創(chuàng)業(yè)公司研發(fā)出能取代彭博終端的產(chǎn)品的可能性很小【研發(fā)出能取代湯森路透(Thomson Reuters)或Factset的產(chǎn)品的可能性也很渺?!浚艺J(rèn)為在彭博終端的“周邊”和“下方”依然存在可以作為的空間——也就是說去開拓彭博不太可能想去涉足的領(lǐng)域。

????尤其是我認(rèn)為如果能把某些精華的互聯(lián)網(wǎng)理念和流程(比如網(wǎng)絡(luò)、眾包等)以及新技術(shù)(大數(shù)據(jù))帶到金融數(shù)據(jù)界,還是有機(jī)會(huì)的,比如:

????(1)金融網(wǎng)絡(luò)/社區(qū)。就像彭博終端所做的一樣,如果能把金融數(shù)據(jù)、分析工具和社區(qū)糅合在一起,也許會(huì)產(chǎn)生一些商機(jī)。資本市場(chǎng)歷來不太有分享的文化(其中有很多微妙之處,我懂的),這有一部分原因是因?yàn)榻鹑谕顿Y的天性。但是至少在某些領(lǐng)域,隨著數(shù)碼一代在機(jī)構(gòu)內(nèi)部得到晉升,這種文化也會(huì)發(fā)展變化。這個(gè)領(lǐng)域除了早期試水者Stocktwits和Covestor之外(他們主要瞄準(zhǔn)非專業(yè)群體),現(xiàn)在面向?qū)I(yè)人士的社區(qū)還包括一開始主要面向買方分析師、但現(xiàn)在已經(jīng)發(fā)展得更廣的SumZero。另外還有稍晚時(shí)候一些面世的Quantopian,它是一個(gè)算法交易社區(qū),很多科學(xué)背景的人和搞數(shù)量分析的人都在這里分享算法和策略。早期創(chuàng)業(yè)公司ThinkNum認(rèn)為金融模型應(yīng)該被分享,而且它想建設(shè)一個(gè)像“Github”一樣的金融模型庫(kù)。大家可以想想,除此之外還有什么可以分享的?

????2. It is an aggregation of niche products. In the world of financial data, there is enough specificity to each asset class (and subsegment thereof) that you need to build a substantially different product for each, which requires deep expertise -- as well as a huge amount of effort and money -- to address a comparatively small user base (sometimes just a few tens of thousands of people around the world). Bloomberg started with fixed income data and, over many years, used its considerable cash flow to gradually conquer other classes (still a work in progress, to this day). So disrupting the Bloomberg is not as "easy" as coming up with a great one-size-fits-all product. It would take immense amounts of venture capital money to build a direct competitor across all those niches.

????3. It's not just a technology play. Providing financial data at scale is not a pure technology play, so it is not a matter of coming up with radically better technology to aggregate and display data, either. At this stage at least, there is a whole web of human processes, relationships and contracts with underlying data providers that has been put on place over many years.

????4. It's a mission critical product. This is a key point. In the financial world, data is used to make gigantic bets, so total accuracy and reliability is an absolute must – which makes people cautious when experimenting with new products, particularly built by a startup.

????The Bloomberg terminal business may face macro headwinds, as described in the Institutional Investor piece (dwindling of the number of relevant jobs on Wall Street and a global shift from desktop data to data feeds). However, as a result of the above, I don't see the Bloomberg terminal being entirely "toppled" by any one given startup anytime soon, and I think even competing directly with any of its key functionalities (unbundling) is a tall order for startups, even with access to large amount of VC money. Not that it can't be done – I just think there are lower hanging fruits out there and some real benefit to position away from the Bloomberg.

????Where are the opportunities in financial data?

????While I don't see much opportunity for startups to build a Bloomberg terminal replacement (or a replacement to Thomson Reuters or Factset, either), I think there are fertile grounds "around" and "below" the terminal – meaning in areas where the company is unlikely to want to go.

????Specifically, I believe there are going to be ongoing opportunities to apply some of the quintessential internet concepts and processes (networks, crowdsourcing, etc) as well as new-ish technology (Big Data) to the world of financial data, including:

????1. Finance networks/communities. Like the Bloomberg terminal did, some of the more interesting "adjacent" plays opportunities will marry data, tools and community. Historically, capital markets haven't seen much of a sharing culture (lots of nuances here, I know), which is in part due to the nature of finance investing itself. However, it's going to be interesting to see how, at least in certain areas, that culture will evolve as digital natives rise in the ranks of their organizations. Beyond early entrants Stocktwits and Covestor (which generally target a more casual audience), examples of such professional communities include SumZero, initially for buy-side analysts but now wider, and more recently Quantopian, an algorithmic trading community where scientifically educated people and other quant types share strategies and algorithms. Early stage startup ThinkNum thinks financial models should be shared and wants to the "Github" for financial models. What else can be shared?

上一頁(yè) 1 2 3 下一頁(yè)

我來點(diǎn)評(píng)

  最新文章

最新文章:

中國(guó)煤業(yè)大遷徙

500強(qiáng)情報(bào)中心

財(cái)富專欄

静海县| 民丰县| 广汉市| 龙井市| 通许县| 寿宁县| 两当县| 河津市| 鄂州市| 延吉市| 喀什市| 农安县| 民勤县| 兰州市| 天全县| 隆德县| 商水县| 广丰县| 宁南县| 洪泽县| 固镇县| 琼中| 崇明县| 加查县| 普安县| 宾阳县| 县级市| 安远县| 桦甸市| 庆城县| 冕宁县| 开远市| 丰原市| 翁牛特旗| 萍乡市| 古浪县| 金坛市| 营口市| 扬中市| 沙雅县| 军事|